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A. Ortho-and Para-Hydrogen Theory

Molecular hydrogen can exist in two distinct forms; ortho-H2 and para-H 2. The

difference between these two forms is that they possess different nuclear spins. Ortho-I-I 2

has the nuclear spins of the two hydrogen atom protons aligned in the same direction, or spin

unpaired. This results in total spin having values of +1, 0, and -1. However, for para-H 2,

the nuclear spins of the two protons are in the opposite direction, or spin paired) and the total

spin equals zero.

The composition of the two forms of hydrogen is dependent upon temperature. At

high temperature, > -50 °C, the composition is approximately 75% ortho-H 2 and 25%

para-H 2. At high temperatures, the distribution is determined by the spin degeneracy and

can be calculated by the formula 2S +1. For ortho-H 2, (S = 1 ), there is a three-fold

degeneracy, while para-H 2 (S = 0) has only a one-fold degeneracy. This degeneracy is

portrayed in Figure 1, with _ indicating spin = 1/'2 and [3 indicating spin = -1/2. There are

three degenerate forms of ortho-H 2 which lead to a total spin of one, while there is only one

degenerate form of para-H2 with a total spin of zero.

composition which is referred to as normal hydrogen.

This three to one ratio leads to the

However, if hydrogen gas at room

temperature is cooled to the normal boiling point of hydrogen, there is a conversion of the

ortho-H 2 to para-H 2 as the temperature is decreased. In fact, the equilibrium composition of

liquid hydrogen is made up almost entirely of the para-H 2 form (99.79%). The equilibrium

composition of hydrogen between the two above described extremes is a function of



temperature.This is shownin Figure 2.1' 2 This total distribution can be calculated by the

summation of the partition function of the nuclear spin rotational energy levels as shown in

the equation below. Summation of all even J values refers to distribution of para-H 2, while

the summation of the odd J values refers to the distribution of ortho-H2 .3

7

Z_r = _evemJ (2J + 1)e -JO+l)sS"3rr+ 3 EoddJ(2J + 1)e -lO+l)sS'3rr

The range of this catalytic study was from approximately -125°C to the liquid nitrogen

temperature composition of 50% ortho- 50% para-H 2 at -196 °C. This range is displayed

in the box in Figure 2.

Although the conversion of ortho- to para-H 2 is a thermodynamically favored

process, it is also a very slow one. In fact, if normal hydrogen is liquefied, the resulting

liquid has practically the room temperature composition. Over time, this mixture will convert

to the thermodynamically favored product, para-H 2. Therefore, to interconvert between the

two forms of hydrogen with any appreciable rate, a catalyst must be employed.

The question may be asked why there is a need to study the catalytic conversion of

ortho- to para-I-I_. To answer this, one must f'u'st understand a little more about the

reactions involved. The conversion of ortho- to para-H z is exothermic. In fact, the heat of

conversion (0.338 kcal/mol) is over 1.5 times greater than the latent heat of vaporization

(0.213 kcal/mol). 1 As stated before, following the liquefaction of hydrogen, the liquid

hydrogen would have a composition of nearly 75% ortho-H 2. Since the heat of conversion is

greater than the heat of vaporization, there would be considerable loss of H2 due to boil-off
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asthe ortho-I-I 2 slowly converts to para-H2 in the storage vessel. This occurrence can be

reduced if a catalyst is used to convert the ortho- to para-H 2 while cooling in the gas phase.

This will help to dissipate the heat of conversion before the ortho-I-I 2 converts to para-H 2 in

the liquid phase.

Liquid H 2, which is almost entirely para-H 2 at equilibrium, is considered by many as

fuel for hypersonic flight, mainly because of its high energy density. Since the conversion of

ortho-H 2 to para-H 2 is reversible, the corresponding reverse reaction, para- to ortho-H2 is

endothermic. This endothermic reaction can provide a heat sink, which can be utilized to

cool the various parts of the aircraft. However, this endothermic conversion proceeds far too

slowly for practical use. The use of a catalyst speeds up the rate of this endothermic reaction.

Therefore, it is a combination of both the slow inherent rate of the reaction along with the

high heat of conversion that make the interconversion of ortho- and para- H 2 an interesting

process to study.

B. Theory of Ortho- and Para- Hydrogen Catalysis

It was reported in 1933 by Farkus and Sachsse that para-hydrogen was converted

rapidly at room temperature to normal hydrogen (75 % ortho-H 2 and 25 % para-Hz) in the

presence of paramagnetic molecules in the gas phase or paramagnetic ions in solution. The

conversion was also reported to be second order in nature. 4 In that same year, Wigner

derived an equation to explain the relationship between the rate of ortho- and para-H 2

interconversion and the magnetic moments of pararnagnetic species and the magnetic moment

of the proton, along with the distance from the paramagnetic center to the proton. 5 This

relationship is shown in the following equation:



Rate ]LI2(M) ]LI2(H2)

r 8

9

where _ (M) and p (1-12) are the magnetic moments for the paramagnetic species and the

proton, respectively. The distance between the paramagnetic center and the hydrogen is

defined by r.

A further analysis was done in 1973 by Petzinger and Scalapino 6 and more recently by

Coffman. 7 Their studies once again derived the equations which explain the rate in which

ortho- and para-H 2 interconvert. The results were very similar to the initial study by

Wigner. It was concluded that the rate was proportional to the magnetic moments of the

hydrogen and the paramagnetic center divided by the distance of the hydrogen to the

paramagnetic center. However, the distance was to the sixth power as opposed to distance

being to the eighth power as proposed by Wigner. This relationship is presented in the

following equation:

Rate _.I2(M) _12(H9

r 6

This equation is of importance in understanding the studies reported here. It helps to

describe ways in which the properties of a catalyst can be altered in the hopes of improving

the rate of ortho- to para-H2 catalysis. It states that increasing the magnetic moment of the
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catalyst active metal will increase the rate exponentially. Also, and more importantly, by

decreasing the distance between the reactant H 2 and the surface, an increase in activity should

be seen that grows exponentially by a power of six. These are the two areas in which the

efforts were directed during the synthesizing of catalysts.

Another theory was presented in 1983 by Stevenson on the mechanism of ortho- and

para-H 2 interconversion by diamagnetic substances. 8 It was stated that any local magnetic or

electrical field would enhance ortho- to para-H 2 conversion. Work by Van Cauwelaert and

Hall support this theory as they studied the conversion of para-H 2 over alumina. 9 Their

study completely eliminated the possibility of the reaction being caused by paramagnetic

centers. They felt the magnetic moment of the exposed 27A1 nuclei was partially responsible

for the conversion. The authors also noted that the addition of transition metals with

paramagnetic properties will cause more intense magnetic centers and increased rates.

It was stated earlier by Farkus that the conversion of para-H 2 to normal H 2 by gas or

solution phase paramagnetic species at room temperature was second-order in nature. It has

been further shown that the order of the reaction is dependent upon the reaction conditions.

In the absence of a catalyst, the ortho- to para-H 2 conversion is a second-order reaction. _°

However, in the presence of a catalyst, the reaction approaches first-order for a gas phase

reaction, n This reaction is the one that is presently under investigation. However, if a

catalyst is added to liquid phase hydrogen, the reaction is considered to be zero-order in

nature, m
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1. Rare Earth Oxide Catalysts

The history of ortho- and para-hydrogen catalysts date back to the initial studies by

Farkus in 1933. However, the majority of the work to date has been attempts to understand

the theory and/or the mechanism of ortho- and para- hydrogen interconversion as opposed

to developing catalysts with high activities which could be scaled up for industrial use.

Selwood did extensive research into the conversion rate of ortho- and para-hydrogen

over the rare earth oxides europia (EuO) and lutetia (Lu203), and ytterbia (Yb203) along with

the other oxides ytlria (Y203) and chromia (Cr203). In the case of yttfia and lutetia, the rate

of reaction was reported to be dependent upon the temperature of pretreatment of the oxide. _2

As the temperature of pretreatment in H 2 gas increased, so did the liberation of water

molecules and the activity. This was believed to be caused by reduction of the metal oxide to

form a pararnagnetic site. This process then liberated the water. In the work with europia

and chromia, conversion was determined at temperatures between 65 K and 187 K. It was of

interest to determine whether the rate of conversion changes as the temperature of conversion

is passed through the Curie temperatures. These are the temperatures where the transition of

ferromagnetic EuO or antiferromagnetic o_-Cr203 to the paramagnetic version of both species

was expected. What was found was little change in the rates at those temperature.

Further study on para-H 2 conversion over neodymium and dysposium oxides was

conducted by Eley. _3 Their results were similar to those of Selwood as activity increased with

the increased temperature of outgassing. The increase in activity was believed to be caused

by loss of oxygen during outgassing. Electron transfer would affect the surface paramagnetic
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moments by generating cations with valence less than three.

Selwood also studied the effect of an extrinsic magnetic field on the para-H 2

conversion rate on rare earth oxides, t4 His studies concluded that the rate of para-H 2

conversion could be increased or decreased by an extrinsic field, and was dependent upon the

metal and the corresponding intrinsic paramagnetic field. His conclusions were that one

could perturb an intrinsic field with an extrinsic magnetic field.

When comparing the rates of the above mentioned catalysts with those presented in

our work, comparisons are difficult as the rate constants for different catalysts were often

calculated differently by each researcher. However, an estimate of the differences among

some selected catalysts will be made. For the Yb203 catalyst prepared by Selwood, the best

rate constant for this catalyst was reported to be 14.2 lamol s-1 m -_. This was calculated for

the conversion of para-H 2 to ortho-I-I 2 at room temperature. Selwood also tested a Gd203

catalyst during his study of the effects of an extrinsic magnetic field. He measured a rate

constant between 170 and 350 lamol s-1 rn -2 when converting para-H 2 to ortho-H 2 as above.

This activity was without the external magnetic field. However, when calculating a rate

constant for CB-U-88, a ruthenium catalyst having excellent activity, the rate constant was

estimated to be approximately 106,000 lamol s-_ m -2. This value was calculated using a

measured activity and the ruthenium surface area using measured active gas adsorption. From

this it is easy to see that catalysts prepared in this work have greater activity then catalysts

prepared by Selwood.

2. Transition Metal Catalysts

Transition metals were evaluated as catalysts for the interconversion of ortho- and
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para-hydrogen. In 1975, Rudham reported para-hydrogen conversion using catalysts

prepared by exchanging low concentrations of Mn, Co, Ni, Cu, Zn, and Pd onto an X-zeolite

support. _5 It was observed that the rate increased relative to that of the support itself for all

metals studied except Zn. However for Pd, the activity was not as great as that of the other

active metals.

In 1968, Singleton and coworkers at Air Products and Chemicals, Inc. completed a

study in which they developed a rate model for the ortho- and para-H 2 interconversion. _6

Their study reported the effects of temperature and concentration gradients within a catalyst

particle as well as the effects of other process parameters. This study was done using a

highly active catalyst reported to be a nickel silicate supplied by Air Products.

Barrick and coworkers studied the conversion of ortho- to para- at -196 °C over

iron oxide gel catalysts. Their study was to find improvements for both preparation and

activation of the catalysts. _7 They reported several results which were of interest for our

study. The preparation techniques and the purity of reagents were highly important.

Catalytic activity varied due to how rigorously a catalyst was washed following preparation,

and how pure the FeC13 precursor was prior to catalyst preparation. It was also reported that

activity was dependent upon the activation conditions. Catalysts had better activities when

activated at higher temperatures and for shorter times. Also, it was reported that the purity of

reactant hydrogen was important to obtain consistent results.

The most comprehensive study to date was by Haley and Hinden for Englehard

Industries in 1965. t8 Their study consisted of testing the Groups Villa and IB metals in

various forms for ortho- to para- conversion at -196 °C. They tested a variety of different
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catalystswhich showeda wide rangeof activities. When testinga finely divided metal or

finely divided metal alloy asa catalyst,it wasfound thatrutheniumor alloys containing

rutheniumdisplayedthe bestactivity. When the GroupVIIIA and IB metalswere supported

on alumina,the rutheniumandnickel supportedcatalystswere the only oneswith at least

moderateactivity. When the supportwaschangedto activatedcarbonor silica, ruthenium

wasagainfound to be the bestmetalcomparedto the othersmentioned. It wasalsofound

that 10%rutheniumsupportedon silica wasmoreactive than thecorresponding30%

rutheniumon silica catalyst.

From the abovereferencedliterature,the metalsiron, nickel andrutheniumaswell as

the lanthanidesshowedpromiseascatalystsfor ortho- to para-H 2 conversion. However,

any metal which has paramagnetic properties should be considered as a candidate if a catalyst

with suitable surface properties can be prepared.

D. Reactor System

The reactor designed to test the conversion of ortho- to para-I-I 2 is a standard

plug-flow reactor operating under integral conditions. 19 A reactor of similar design is

discussed by Haley and Hindin in the Engelhard Technical ReportJ 7 The following is a

discussion of the theory behind ortho- and para-H 2 detection as well as modifications made

to the previously referenced reactor design.

The method of analyzing gas mixtures dependent upon thermal conductivities is a

highly developed technique. 2° Since, as shown in Figure 3, the thermal conductivities of

ortho- and para-I-I2 differ to about 400 °C, one can take advantage of this using a thermal

conductivity detector (TCD). 2_ The TCD filaments are aligned to form the four arms of a
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Wheatstonebridge. Thesef'damentsaredivided into two pairs, with each pair having

matched resistance. Each filament is in a cavity for separate gas flow. Reference normal H a

(75% ortho, 25% para ) is passed across one pair at 150 mL/min and the test H_ is passed at

a matched flow rate across the other pair. At a total bridge current of 175 milliamp the

bridge imbalance is measured as a miUivolt (mV) potential across a 10K t2 resistor. If the

test flow is Normal H 2, there is no bridge imbalance. If the test flow contains excess

para-H 2, one gets a positive mV response. Any other contaminant (N2, He, H20, etc.) will

give a negative mV response. Figure 3 also shows that since the thermal conductivity

difference decreases with increasing temperature, the measurement should be at the lowest

stable temperature allowed by the bridge. Following a 1/2 hour (h) warm-up period in

which the bridge is energized, this temperature was determined to be approximately 40 °C. A

simplified detector schematic is shown in Figure 4.

The bridge was calibrated quantitatively using the following procedure. Air Products

nickel silicate was placed in two separate reactors that were in series with each other. Each

reactor contained approximately a ten fold excess of the amount of catalyst needed to convert

to the equilibrium composition at -196 °C. At that temperature, the 25% excess of para-I-I 2

in the test stream leads to a bridge imbalance measured as 2.48 mV. Assuming the response

is linear, one can conclude that for each percent of excess para-H2, a 0.099 mV response is

measured. For example, a measured response of 1.23 mV would lead to the calculation of an

ortho- and para- composition of 62.6% and 37.4%, respectively.

A more detailed reactor schematic is illustrated in Figure 5. It consists of 2 separate

reactor tube assemblies which are described in more detail later. These reactor assemblies
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can be heated up to 600 °C using column mantles (Glass-Col), or cooled in a Dewar flask of

liquid nitrogen or other low temperature slurries for catalytic testing. Temperature is

controlled to ±1 °C in the heating cycle by a Type K thermocouple temperature controller

(Omega).

All components are constructed of 303 or 316 stainless steel (Valves and tube fittings;

Swagelok Co.; Tubing; Alltech Inc.). Pressure gauges arc constructed of 316 stainless steel

inner components, (Ashcroft) while flowmeters are 130 mm Pyrex glass tubes with stainless

steel or glass floats (Cole-Parmer).

For activation of a catalyst, one can chose either He (Air Products High Pressure;

99.995% pure) or H 2 (Air Products UPC grade; 99.999% pure) gases, along with the choice

of compressed air or vacuum. During activation, these gases are passed across the catalyst

bed at a flow rate of 50-100 mL/min and vented to a hood.

For testing of a catalyst, UPC 1-I2was split into two streams. A portion is used as the

TCD reference flow as described earlier and the remainder is measured by a mass flow

controller (Brooks Instrument Co.) calibrated at 0-30 L/min at 250 psig. Following the mass

flow controller, the H 2 is passed across the catalyst bed. The pressure gauges are positioned

to allow measurement of the inlet and outlet pressure. These values can be used to calculate

a corresponding pressure drop across the catalyst bed. Following the catalyst bed, the total

pressure of the catalyzed H 2 was regulated down to 60 psig. This allows easier control of the

total flow rate by the two regulating valves. A portion of this test stream (134 mI./min) is

matched with the reference flow across the TCD, while the remainder is vented through a

flowmeter to the hood. It should be noted that the combined flows of the vent and TCD
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should equal the flow rate measured by the mass flow controller.

1. Reactor Tube Evolution

a. Reactor Assembly 1; No Thermocouple

The initial reactor tube assembly can be seen in Figure 6. This reactor assembly

consists of a 3 foot length of 1/8" stainless steel tubing which has been wound into a coil

with a 4 inch diameter. This serves as a pre--cooler to ensure the 1-I2 is cooled to the reaction

temperature before contact with the catalyst. Following the pre--cooler, the catalyst bed is a

1/4" outer diameter (OD) straight stainless steel tube, 4 inches long. The catalyst was held in

place by stainless steel screens (80 mesh; Alltech) between 2 Swagelok unions. Following

the second screen, the H_ flows directly to the detector. This reactor tube assembly is

attached to the system through the use of Swagelok Quik-Connects, which allow easy

removal and installation of the reactor, without contact with the air.

The reactor tube was later changed from the 1/4" OD tube as described above to a

1/8" OD tube. This dropped the inner diameter from 0.21" to 0.0821" or less than half the

original diameter. This was needed for the following reasons. First, with the flow rates

obtainable on this reactor, it was necessary to have catalyst samples of 100 mg or less. With

this small amount of sample, it was felt that the catalyst bed was too shallow and there was a

greater chance that a portion of the H 2 would not come in contact with the catalyst at all.

This condition is known as reactant blow-by. With a 1/8" tube, the effective catalyst bed

was doubled in length, increasing the chance that every I-I2 molecule would come in contact

with the catalyst. With the 1/4" tube, activity decreased with increasing flow rates, indicating



blow-by. After changingto the 1/8" tube, the calculated activity remained constant with

increasing flow rates, indicating blow-by was eliminated. The second concern was of heat

transfer to the center of the tube. Since, as explained earlier, the conversion of ortho- to

para-H 2 is exothermic, there exists the possibility of a temperature gradient developing

between the center of the catalyst bed and the outer wall. This could cause the activity

measurement made to be at a temperature warmer than the isothermal bath temperature.

Reducing the distance between the bed center and the bath should reduce the possibility of a

temperature gradient and ensure accuracy in the activity measurements made. An accurate

temperature must be known in order to calculate accurate catalytic activity.
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b. Reactor Assembly 2; Bent Thermocouple

Reactor Tube Assembly 2 can be seen in Figure 7. The following modifications were

made as improvements to the fhst tube. A VCR fitting (1-3) (Cajon) was placed on a

Swagelok tee (4) leading into the catalyst bed. This is to allow easy loading and removal of

each catalyst sample. The second improvement was the addition of a thermocouple assembly

(7-9) to the base of the catalyst bed. The manifold, a 3/8" OD stainless steel rod with a 1/4"

ID internal cavity, was attached to the rest of the assembly by using Swagelok reducers silver

soldered into place. The thermocouple itself was a 1/16" OD Type K stainless steel probe

(Omega), with the temperature measurement at the tip directly in the gas flow.

The major disadvantage of this assembly was the sharp bend in the thermocouple

probe. With the constant removal and insertion of this assembly from a cold dewar or

heating mantle, the physical stress on the probe caused electrical shorts to develop in the

probe, rendering it useless. Note that contact between the stainless steel manifold and the
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c. ReactorTube Assembly3; StraightThermocouple

Furthermodificationsweremadeto relieve the stresson the thermocouple.These

changesareshownin Figure 8. This involved replacingthepreviousmanifold with a larger

one,which was 1" in diameterwith the same1/4" internalcavity. The 1/16" OD

thermocoupleprobewasreplacedby a 1/8" OD probewith a 1/16" OD reducedtip. This

workedmuchbetterin termsof physical stability, but the largemassof the manifold and the

shortdistancebetweenthe thermocouple tip and the connection point caused a problem. The

temperature measured was that of the stainless steel instead of the outlet gas. In fact, the

measured temperature on Reactor 3 dropped as much as 30 °C for the same catalyst relative

to Reactor 2. Therefore, an accurate temperature measurement could not be made.

d. Reactor Assembly 4; 2 Thermocouples

The final modifications to the reactor tube assembly are shown in Figure 9. To avoid

the problems of assembly 3, the manifold was made of 1/2" square stainless steel stock, 6

inches in length with a 1/4" cavity drilled out of the center. This allowed nearly 6 inches

between the thermocouple's attachment to the manifold and the tip. To allow added

ensurance, a second thermocouple was added at the gas inlet. This was to compare inlet and

outlet gas temperatures and ensure that the whole system was at thermal equilibrium. It was

concluded through blank cooling and warming runs, as well as the actual testing of a catalyst,

that the temperature of peak activity can be measured to +5 °C.
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E. Description of Testing Procedure and Definition of Activity

The following is a discussion of the testing procedure and determination of activity for

a catalyst at -196 °C. Approximately 100 mg of catalyst was weighed, placed in a reactor

assembly, and inserted into the system. It was then heated for a given time using one of the

activation gases as described earlier. The reactor was then cooled in a 2 liter stainless steel

Dewar flask filled with liquid Nz. When the vigorous boiling had subsided, the detector

response and 1-12flow rate were recorded. The catalyst was removed from the reactor and

weighed to determine weight loss due to activation.

Since the present study was not interested in the kinetics of ortho- to para-H 2

conversion, but rather in developing a highly active catalyst, we were not measuring absolute

rate constants, but different catalyst activities were compared using specific reactivity. This

value is a measure of how much catalyst is needed to convert a specific amount of H 2 a

specific extent at a given temperature. When the specific temperature is -196 °C and the

extent of conversion is 70% of maximum, this is defined as 13._7 13can be defined

mathematically in the following equation.

Mass Catalyst x Max % H 2 Convertible (o to p) at -196 °C x 70%

Mass H 2 / s x % H 2 Converted (o to p)

The mass of the catalyst is measured following reaction, while the mass flow of H 2 is

measured by the mass flow controller. This value was kept constant at 22.2 mg/s. The

percentage of the hydrogen sample converted from ortho- to para-H 2 was calculated as

described earlier. Since the room temperature composition is 75% o-, 25% p- and at -196°C



21

the composition is 50% o- and 50% p-, the Max % Hz Converted (o to p) at -196 °C is

25%. When comparing catalysts, a lower 13value indicates a better catalyst, meaning it takes

a smaller amount of the catalyst to get the same extent of conversion.

As discussed in the introduction, the kinetics of the catalytic conversion of ortho- to

para-H2 is first order in nature. It should follow that plotting the -In[concentration] vs. time,

generates a straight line. In this case, a straight line is obtained when plotting

-In[l-conversion] vs. mass catalyst/mass H2/s. It also follows that a 13value can be

determined from this plot by finding the value of mg cat/mg H 2 s at -ln[1-70%], which has a

value of 1.2. Furthermore, it has been shown that the slope of the line is the sum of the

forward (k _ ) and reverse (k-1) rate constants. _ Becaause at equilibrium at -196 °C, the

forward and reverse rates are equal, a first order rate constant is equal to 1/2 the slope of the

line of this relationship. The values obtained from these two methods are similar with the

second method usually giving a slightly higher value. This difference converges as the

catalyst improves. From this point on, lY will indicate a value determined by the first

method, while 13m will indicate a value determined by extrapolation of the kinetic plot.

While the intent of this study was to test catalysts at -196 °C, it was discovered that

some catalysts show a distinct maximum activity at a temperature wanner than -196 °C. It

was shown that while cooling some catalysts to -196 °C, the detector showed a large

response before the system reached thermal equilibrium in the liquid N 2. Upon removal of

the Dewar flask, the mV response rose as the system warmed. To compare these results, the

term 13' was coined. It is similar to 13' with a minor change, as shown in the following

equation.
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Mass Catalyst x Max % H 2 Convertible (o to p) at Temp x 70%

Mass _ / s x % H 2 Converted (o to p)
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Since the measurement is no longer at -196 °C, the possible conversion will decrease with

respect to temperature. For example, if the temperature of maximum response is -158 °C,

the thermodynamic composition would be 34% para and 66% ortho leaving the Maximum %

of H 2 convertible to be 9% instead of the 25% at -196 °C.

Determination of the temperature of maximum response was done in the following

manner. The reactor assembly was cooled to -196 °C. The liquid N2 Dewar flask was then

exchanged for a liquid N2, 2-methyl butane slurry (m.p. -160 °C), allowing the temperature

to rise slowly, at approximately 10 °C per min. When the response reached a maximum, the

temperature was recorded. Following determination of that temperature, subsequent trials

with the same catalyst were recorded while warming in air instead of the slurry, as the slurry

was time consuming and expensive to make repeatedly. The temperatures in air were

unreliable due to problems explained in the evolution of the reactor assembly. For those

catalysts where the temperature for maximum activity was above -160 °C it was difficult to

assign a temperature and the attempts were inconsistent.
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A. Preparation

All catalysts discussed in this section have a specific label which refers to its location

in the appropriate table.

1. Iron Silicates

CB-I-1 was prepared using the following general procedure, known as

coprecipitation. Into separate burets was placed 15 mL of M Fe(NO3)3 and 15 mL of 1M

Na_SiO 3. Simultaneously, the solutions were dripped at a rate of 2 drops per second into a

stirred solution of 20 mL of 20% w/w NaNO3. This mixture was stirred for 45 rain, filtered,

and dried at 130 °C overnight.

CB-I-2 used the same coprecipitation procedure except that the NaNOa solution was

replaced with 1-120. Both CB-I-1 and 2 were light gold in color.

2. Chromium Silicates

CB-I-3 was prepared using the following procedure, known as the Sol-Gel method.

To a beaker, 100 mL of 1M Na2SiO 3 was added. To this was added 68 mL of 3M HNO3,

which lowered the pH to 1.7 and caused a gel to form. To this gel was added 100 mL of 1M

CrfNO3)3 and the mixture was stirred for 1 h. One molar Na2CO3 (67 mL) was added to

raise the pH to 6.9. This metal gel was suction filtered, washed with H20 (2 x 100 mL) and

MeOH (2 x 100 mL). The catalyst was dried at 23 °C for 2 h followed by 150 °C for 4 h in

a vacuum oven.

CB-I-4 was prepared by the coprecipitation method described in the iron silicate

section with the following changes. 100 mL of 1M solutions of Cr(NO3) 3 and Na2SiO 3 were

injected into 80 mL of NaNO3. The resulting gel was stirred for 1 h, and was then washed

and stirred in MeOH overnight. The catalyst was dried at 110 °C overnight. These catalysts
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3. Manganese Silicates

CB-I-13 was prepared using the coprecipitation method as described for CB-I-4.

Changes include substituting Mn(NOa)2 for Cr(NOa)3. All other parameters remained

constant. CB-I-29S and 29L were prepared in the same manner as 13 except 29S was aged

in the mother liqueur for 5 h, while 29L was aged for 12 h. Both catalysts were treated with

MeOH and dried as above. The above gels were initially pink but turned light brown with

time, and dried as a light brown solid. CB-I-30 was prepared using the same general

procedure, except the synthesis was done anaerobically to prevent the air oxidation of Mn _ to

Mn _. The Mn and SiO3 solutions were degassed with N2. The solutions were injected using

addition funnels into a three-neck round-bottom flask which was previously evacuated. The

gel was kept from air, filtered using a frit, and dried in the vacuum oven at 110 °C. The gel

remained pink longer than previous Mn samples, but eventually turned brown. This catalyst

preparation was attempted several times to keep the Mn in the +2 oxidation state, but failed.

4. Nickel Silicates

Initial work with nickel silicates involved chemical activation on Air Products HSC

197 Nickel Silicate. A catalyst (AP-DMP) was prepared by refluxing 2 g of AP in 100 mL

of 2,2--dimethoxypropane for 2 h. The sample was initially dried at 23 °C, then at 110 °C,

all while in a vacuum oven. A similar catalyst (AP-REF) was prepared as AP-DMP except

the catalyst was refluxed in MeOH instead of 2,2 DMP. Both of these samples were prepared

with the intent of determining the effect of chemical drying on the activity of the catalyst.

CB-I-7 was prepared using coprecipitation as described in CB-I-1 with the following

changes. A solution of Ni(NO3)2 replaced the iron solution. 100 mL volumes of the 1M

Ni(NO3)2 and Na2SiO3 were injected into 80 mL of NaNO3; and the catalyst was stirred for 4
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h in water, filtered, and driedat 150 °C as above. CB-I-9 and 9M were prepared as above

except following filtering, 9M was washed with MeOH overnight, refiltered and dried.

CB-I-9MR was prepared by drying and crushing half of 9M, refluxing it in MeOH for 1 h,

followed by redrying.

5. Metal/Metal Silicate

The following is a discussion of the impregnation of metal salt solutions on metal

silicate supports. Table 1 illustrates the impregnation of Fe(NOa)a solutions on Air Products

nickel silicate. Approximately 1 g of AP was placed into a 250 mL round-bottom flask and

evacuated for 2 h. To this, 5 mL of the iron solution was added via a funnel and allowed to

sit for the time indicated in the table. The solvent was then removed by vacuum at room

temperature and the catalyst was fully dried at 110 °C. The final row in the table, CB-I-22,

indicates the substitution of Cr(NO3) 3 for Fe(NO3)3. Table 2 indicates the impregnation of

Fe(NO3)3 on a previously prepared CB-I-9M silicate. The procedure remained identical to

the one described earlier.

B. Catalytic Testing

1. Activity Testing of Air Products Nickel Silicate

a. Activation Time and Temperature

The conditions suggested by the manufacturer for the activation of Air Products

catalyst involved heating the catalyst at 150 °C for 4 h under a 20 mL/min He flow. Under

these conditions, a 13value of 20 was expected, and confirmed experimentally. However, we

found that if the catalyst was heated at the same temperature for 12 h instead of 4, the

value increased to 24.0. The catalyst demonstrated deactivation under prolonged heating. On

the other hand, it was found that the 13value was lowered to 15.7 by heating at 275 °C for
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only 2 h. Although this was a commercially prepared catalyst, this result supports the

previous claims by Barrick. 23 A distinct color change of the catalyst was noticed as well.

Prior to use, the catalyst is bright green in color, it changes to a dull green following

activation at 150 °C. The color activation at 275 °C was tan-green, a much duller color than

observed at 150 °C. It is felt that the increase in activity can be attributed to the combination

of two related factors. First, it is felt that the catalyst becomes more dehydrated by activating

at 275 °C vs. 150 °C. This should lower the catalyst weight and make the numerator of the 13

equation smaller, hence lowering 13. This was confirmed by an increase in the percent weight

lost during activation at the higher temperature. Second, with the increased dehydration, it

should make available more active sites which were occupied by water, also lowering the

radius of closest approach for a H 2 molecule to an active site. We feel the various changes in

color with respect to the activating temperature give evidence for increased dehydration.

b. Activating Gas or Vacuum

The effect of activating gas was also studied. By activating under 1-I2flow at both 150

°C and 300 °C for 2 h, the catalyst lost most activity, giving 13 values greater than 100. It

was believed that the nickel was reduced to Ni °, as the catalyst turned black in color, was

pyrophoric when exposed to the air, and became ferromagnetic. This leads to the belief that

Ni x is the active component, rather than nickel metal.

Since it has been shown that activation occurs through dehydration and desorption of

the catalyst surface and not reduction, one should be able to activate using a vacuum instead

of inert gas flow. By heating Air Products catalyst at 300 °C for 2 h in a vacuum, the

catalyst showed a 13value of 16.0, which is fairly close to the result achieved with a He flow.

The color of the catalyst following vacuum activation was similar to that observed following

the He studies. Results of both the time and temperature studies along with the activating gas

study are shown in Table 3.



27

The activity of Air Productscatalystvs. the temperature of conversion is displayed in

Figure 10. As shown, there is only modest variation in the 13value with respect to the

temperature of conversion. The tail for the warmer temperatures is due to inaccuracies for

both the measuring of an exact temperature along with the smaller detector response

associated with a smaller possible para-H2 conversion. This figure does show that the

activity is fairly temperature independent down to -196 °C. This catalyst was tested

following He activation for 1 h at 275 °C.

c. Effect of 1-12Flowrate

Initial studies for calibration of the reactor system used Reactor Tube Assembly 1 with

a 1/4" OD tube. At low flow rates (less than 5 L/min), 13was 27.0 following a 4 h

activation at 150 °C in He. As the flow increased, the 13decreased to a minimum value of

20.0 at a flow of 15.7 L/min. At higher flows, the 13increased with flow until the maximum

flow of the reactor was achieved. This can be explained by the following argument. At low

flow rates, the pressure drop across a shallow reactor bed is close to zero. With low reactant

back pressure, it is felt that the residence time of the reactant on the catalyst surface is

lowered, thereby decreasing the possibility of an ortho- to para-I-I2 conversion occurring,

increasing 13. As the flowrate increases, the back pressure increases accordingly, allowing the

H 2 molecule sufficient time on the surface to react, decreasing 13. Increasing the flowrate

further continued to increase backpressure, but reactant blow-by caused 13to increase as well.

The H 2 molecules which had time to get to the surface stayed there long enough to react, but

some H 2 was blown through the bed without contact with the catalyst.

By switching to a 1/8" OD reactor tube, there was sufficient back pressure at low

flowrates. This was caused by the length of the catalyst bed being more than doubled,

increasing restriction. The increased bed length also ended the problem of blow-by at the

maximum flow of the reactor. By activating Air Products catalyst at 150 °C in He for 4 h, a
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d. Activity of Enhanced Air Products Nickel Silicate Catalyst

Earlier discussion has demonstrated that the activity of AP was increased by an

increase in the dehydration of the catalyst. Due to this, an effort was made to chemically

remove water. It is known that 2,2-dimethoxypropane should react with water to give

methanol and acetone. _ The resulting organic solvents are much more volatile and easier to

remove than water. The 13for AP-DMP, the AP sample dehydrated using

2,2--dimethoxypropane, was 16.1 but at the activation conditions of 275 °C in He for only 40

min. In fact, AP-DMP had a I_ of 40 without activation while unactivated AP showed little

activity ([_ > 100), indicating that the methanol and acetone which replaced water can be

partially removed by a room temperature vacuum. AP-M and AP-R were prepared by the

washing or refluxing of Air Products catalyst in methanol in the hope for a simple exchange

with water. While both gave activities similar to unenhanced AP (l_ = 16.2; 2 h in He at 275

°C), neither showed activity enhancement. Results of this study are shown in Table 4.

Conclusions from this study is that chemical activation helped to shorten the activation time,

but did not increase activity.

2. Synthesized Metal Silicates

a. Iron, Manganese, and Chromium Silicates

This is a discussion of the activity of all metal silicates prepared, except nickel. With

regard to iron silicates prepared, CB-I-1 had a 13of 49.2, while an activity for CB-I-2 was

observed to be greater than 100 following activation at 150 °C for 4 h in He. While neither

showed exceptional activity, the need for NaNO3 was clearly demonstrated. The Na ÷ and

NO3- ions act as a filler during gel formation, helping to create a porous structure.

The importance of a porous silicate can be seen in CB-I-3 and 4 as well. Both of the
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chromium silicates had very low activity (_ > 100) after 150 °C activation. It was felt these

catalysts were non-porous, giving a low relative metal surface area for reaction.

More promise was demonstrated with respect to the manganese catalysts. CB-I-13

was nearly as active as AP, with a 13 of 20.7 (150 °C for 4 h in He). Catalysts CB-I-29S

and 29L were never tested, however similar samples prepared by Song _ and Gloer _ showed

13values between 20 and 40 when activated between 150 °C and 300 °C in He and it was felt

there would be no improvement. CB-I-30 was never tested because a silicate with the Mn n

oxidation state was never obtained and it was felt the catalytic activity would not differ

greatly from other Mn m catalysts. Results from all metal silicates prepared (except Ni) are

presented in Table 5.

b. Synthesized Nickel Silicates

With the work done on preparing metal silicates other than nickel, it became obvious

that there was difficulty in finding a catalyst with greater activity than Air Products nickel

silicate. We therefore shifted our efforts to prepare nickel silicates by various methods. The

activities for these synthesized nickel silicates are displayed in Table 6.

CB-I-7 and 9 were prepared using the same procedure and yielded very similar

activity (1_ = 55 and 60, respectively at 150 °C for 4 h in He). However, if the activation

temperature was increased to 275 °C, the 13value for CB-I-9 dropped to 17.1 It was felt

that there was water trapped inside the silicate structure following preparation which was not

liberated at 150 °C. By substituting the water used as a solvent in the coprecipitation step for

methanol in CB-I-9M, _ was lowered to 14.4, even at an activation temperature of 150 °C.

Activation at 275 °C lowered 13even further to 13.3. We feel this is caused by water having

a higher surface binding to the silicate than MeOH. Upon drying, the water clings in the

silicate pores, causing them to collapse. MeOH helps to reduce this effect. Also, MeOH is

more volatile than water, making it easier to remove.
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By refluxing CB-I-9M in MeOH following drying andcrushing,CB-I-9MR had a

valueof 12.1 following activation at 300 °C. We feel that this can be attributed to catalyst

dust trapped in the small pores following crushing. During reflux, air trapped behind these

dust particles explodes outward, clearing the pore and increasing the total pore volume.

Further evidence of the importance of a large total pore volume was demonstrated by

LaBrushY He prepared a nickel silicate (DML-EG) in which ethylene glycol, a larger

molecule, was substituted for NaNO3 in solution. This increased the total pore volume, and

activity increased to _ = 11.0 following activation at 300 °C.

c. Impregnated Metal Silicates

A study was conducted to determine if the addition of an additional metal to a

previously prepared metal silicate would enhance catalytic activity. In this case, the effect of

iron impregnation on nickel silicate was studied. As shown in Table 7, the addition of iron to

Air Product decreases the catalytic activity. It is felt that this is due to either the loss of

equal amounts of more active Ni sites for a less active Fe sites. Similarly, the loss of more

Ni sites for less Fe sites, both of equal activity would have the same effect.. The more iron

that is added, either by a greater iron concentration of the impregnating solution, or a longer

impregnation time, the worse the activity became. However, the addition of iron to

CB-I-9M shows a definite increase in catalytic activity, as shown in Table 8. One possible

explanation for this is that there are void spaces on the silicate where no nickel was

incorporated. Iron would fill those spaces, helping to increase activity. The increase in

activity decreases with the amount of iron added. It is felt that the addition of more iron than

needed to fill the void spaces would have the same effect as earlier described. In fact, it was

further shown by LaBrush 26 that the activity of AP decreased with the addition of Mn a while

the activity of a coprecipitated nickel silicate increased with the addition of Ni a.
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C. Characterization by N, Condensation/Adsorption

Initial characterization of the metal silicates involved measuring total surface area and

total pore volume. This was done before catalytic testing could be performed and catalysts

were synthesized under the assumption that increased surface area and total pore volume

would increase activity. The results presented are for a select group of catalysts, because not

all metal silicate catalysts prepared were tested for a total surface area or total pore volume.

Table 9 shows the surface area and pore volume measurements collected during this

study. No measurements were collected for iron silicates, as the activity was poor and this

class of catalysts was not pursued. Chromium silicates were among the fn'st catalysts

prepared. To help determine their quality, surface areas were determined before they were

tested for catalytic activity. As one can see, the surface area is only about 1/4 of that of AP.

This would agree with the catalytic testing of these catalysts which performed very poorly.

The only manganese catalyst tested was CB-I-13. This catalyst showed a very good

pore volume (0.55 cc/g) but an intermediate total surface area (225 m2/g). It was felt that this

catalyst had a larger average pore diameter than AP. Generally speaking, a high population

of smaller micropores yields higher total surface areas than a catalyst with the same total pore

volume and larger pores. It was hard to conclude anything from these results because the

activity of this catalyst was similar to AP.

A more extensive study of nickel silicates was completed. The results obtained were

as expected. CB-I-9 had an intermediate surface area and a relatively low pore volume.

The activity reflected these trends as it was not as active as AP. However, by washing in

MeOH (CB-I-9M) the surface area and pore volume rose dramatically, as did the catalytic

activity. This observation would support the previous assumption that a catalyst with a higher

surface area and pore volume would be more active. It was proposed that refluxing

CB-I-9M in MeOH, would remove small dust particles trapped inside the micropores. The

data supports this proposal in that the total surface area increased greatly, while the total pore
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volume increased only slightly. This would be expected by decreasing the average pore

diameter which would be accomplished by removal of dust from the micropores. DML-EG,

a nickel silicate prepared using the MeOH wash technique as well as the substitution of

ethylene glycol for sodium nitrate showed an increase in total pore volume as well. This was

predicted as ethylene glycol, a larger molecule than sodium nitrate, serves as a larger

formation site for the silicate. The surface area for DML-EG was not determined. It was

predicted to be less than CB-I-9MR because it should have a larger average pore diameter.

The only impregnated silicate tested was CB-I-12. The surface area was much lower

then the original AP. This may be explained by the filling in of a highly complex silicate

structure by a metal salt. The complex silicate would have many nooks and crannies which

would increase the total surface area. Filling them with the metal salt would lower that

surface area. It is unknown whether the number of active sites varies from AP and if they

do, by how much.

The main conclusion made from this study was that activity was dependent upon the

catalyst having a large total surface area and large total pore volume. With a large total

surface area, there is a greater number of metal atoms on the surface. This will yield more

active metal sites for catalysis. A large total pore volume helps the mass transport of reactant

H 2 through the body of the catalyst particle to the surface. This increases the probability that

an H 2 molecule finding the surface will be converted from ortho- to para-H2.

First, as displayed with chromium, a very low total surface area generally means poor

activity. But as displayed in the nickel catalysts, as the total surface area and pore volume

was increased by various modifications in the preparation technique, the activity increased as

well. This supports the previous claim that the modifications in preparation (MeOH wash,

reflux) did indeed increase pore volume which in turn increased the total surface area of the

catalyst, thus increasing catalytic activity.
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D. Conclusions for Metal Silicates

When looking at the work done with metal silicates, including enhancing AP,

preparing various metal silicates, and impregnating nickel silicates, some conclusions can be

made. First, the silicate can only be activated by He, not I-I2. This most likely suggests that

the activation process is a desorption of water and other adsorbates from the surface, not a

reduction of the metal ion to metal. This is further supported by work with AP in which

increased activity was observed by increasing the activation temperature. It is felt that the

increased activation temperature from the suggested 150 °C to 300 °C reduces the hydration

of the catalyst. Water is thought to both increase the catalyst weight and block the distance

of a reactant 1-12to the surface, both of which reduce activity.

Second, nickel was the best choice over iron, manganese, and chromium for the

preparation of metal silicates. It is unknown whether this is because nickel inherently is a

better metal for ortho- to para-H a conversion or if nickel causes the formation of a better

metal silicate, which yields a better catalyst surface.

Third, an increase in total pore volume will increase activity. This was displayed with

the prepared nickel silicates. Each time an improvement was made to increase the total pore

volume, activity increased as well. It is felt that this can be attributed to better mass transport

of H e through the catalyst. If Ha has an easier opportunity to get to an active site, it is more

likely to be converted. Also, by increasing the pore volume, the total active surface area

should increase. Both factors should increase activity. A limit to this effect is most likely

the physical stability of the catalyst, as the catalyst become more fragile to crushing.

Finally, additional metal added to a preexisting metal silicate increases activity only if

the surface is not already saturated with metal sites. If the surface is saturated, the additional

metal will not only add weight, but cover existing sites. Both of these factors will decrease

activity.



Ill. Ruthenium Catalysts

34

A. Preparation

1. Traditional Ruthenium Catalysts

To a 250 mL round-bottom flask was a weighed amount of pretreated silica support

(PQ 1022G; 35-50 mesh) and the mixture was held in vacuo for 2 h. To this, the calculated

amount of ruthenium salt [RuC13, Ru(NO)CI3, or Ru(NO)(NO3)3] for a desired metal loading

was added via a separatory funnel. The funnel was then rinsed with 2 mL of 1-120. The

resulting mixture was allowed to sit for 5 hours. The solvent was then removed using a

rotary evaporator with a bath temperature of 50 °C. The catalyst was dried in a laboratory

oven at 130 °C overnight. Ru metal content was determined by weight gain of the support

and conf'trrned spectroscopically. Metal content was determined by spectrophotometric

methods described by Beamish. _ Excess Ru, which had crystallized on the sides of the flask

following impregnation and remained following catalyst removal, was washed out and diluted

to a concentration of approximately 10 ppm. A 10-mL aliquot of this dilute Ru solution was

added to 10 mL of 20% NaC1, 5 mL of 5% NH3OH.HCI and 15 mL of 1,10-Phenanthroline.

This solution was adjusted to a pH of 6 with NaOH, diluted to 100 mL, and heated to a boil

for 1 h. The absorbance of the resulting yellow solution was measured at 448 nm using a

Bauch and Lomb spectrometer. The absorbance was then compared to a standard Ru curve

and the Ru metal concentration was extrapolated. Using the dilution factor, the amount of Ru

metal remaining in the flask was calculated. RuCn_,_) was then subtracted from Ruc_t) to

calculate Ru_c,t ), which was used to calculate a percent metal loading. This method was used

for calculation of all traditional ruthenium catalysts preparations.
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2. RutheniumAmmine PrecursorCatalysts

Catalystswerepreparedby thefollowing generalproceduredescribedby Gayz9 and

modified by Wu 3°. To a 50 mL beaker, was added a weighed amount of pretreated silica

support (PQ 1022G; 35-50 mesh). To this, enough concentrated ammonium hydroxide was

added to saturate the support and partially ionize the silanol groups. In a separate 100 mL

beaker, the desired amount of ruthenium salt, Ru(NO)(NO3)3 or RuCI a, was dissolved in 20

mL water, and 2 mL of hydrazine hydrate was added dropwise under constant swirling.

When N 2 evolution had slowed, an additional 5 mL of hydrazine was added to ensure

completion of the reduction of Ru from 3+ to 2+ and formation of a stable ammine complex.

This solution was allowed to sit for 1 hour to permit all N 2 to escape. The Ru n solution and

the above mentioned support were mixed and allowed to sit for 16 hours. The catalyst was

dried under vacuum for 2 hours and in the air for 16 hours at 115 ° C.

Ruthenium metal content was determined by a spectroscopic determination of K2RuO 4

concentration as described by Marezenko 3_ and Beamish 27. This involved the oxidation of

Ru ° to Ru w in a eutectic melt of KNO3 and KOH at 350 °C.32 The catalyst was reduced in

flowing I-h at 350 °C overnight in a tube furnace. Approximately 20 mg of the reduced

material was weighed and crushed to a fine powder and added to a porcelain crucible. To

this was added -- 0.5 g of KNO3 and -- 1 g KOH. The mixture was then heated at 350 °C in

a muffle furnace overnight. The resulting K2RuO4 was dissolved in water, and diluted to 50

mL in a volumetric flask with 2 M NaOH. A sample of the resulting orange solution was

centrifuged to remove any remaining silica particulate, and the absorbance of the supernatant

was measured at 465 nm using a spectrometer. This value was compared to a standard

calibration curve and Ru v1 concentration was extrapolated. From this, Ru content of the

catalyst was calculated.
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3. (_4--cyclohexa-l,3--diene)(rlt-benzene)Ruthenium(0) PrecursorCatalysts

Zinc dustwasactivatedaccordingto Perrin andArmarego33. Cyclohexa-l,3-diene

was distilled and stored under nitrogen.

Cyclohexa-l,3-diene (4.2 g, 52 mmol) and activated zinc dust were added to a 250

mL round-bottom Schlenk flask. To this was added 8 mL of a RuCI 3 (320 mg, 1.23 mmol)

solution in ethanol. The resulting blue mixture was stirred at room temperature for 3 h. The

final solution, which had turned yellow-brown was purified on alumina, washed with hexane

(2 x 30 mL), and the solvent was removed under vacuum. To this yellow solid was added 40

mL of hexane and filtered through a 20 cm alumina column. The resulting solution was

reduced to 5 mL and upon cooling to -78 °C, yellow crystals formed. The mother liquor was

syringed out and the remaining solvent was dried in vacuo to give 0.22 g of

(rl4-cyclohexa-l,3-diene)(rlt-benzene) Ruthenium (0) (68 % yield).

The catalyst were prepared using the following general procedure. To a 250 mL

round-bottom flask was a weighed amount of pretreated silica support (PQ 1022G; 35-50

mesh) and the mixture was held in vacuo for 2 h. To this, the calculated amount of

(rl4--cyclohexa-l,3--diene)(TIt-benzene) ruthenium (0) for a desired metal loading was added

in 10 mL of anhydrous hexane via a cannula. The resulting slurry was allowed to sit

overnight and the solvent was removed under vacuum. The catalyst was then stored under

nitrogen.

B. Catalytic Testing

1. Activity of Traditional Ruthenium Catalysts

a. Activation Conditions: Time, Temperature, Gas, and Pressure

Results for the catalytic testing of CB-II-20 are shown in Table 10. The number

following the result in the text refers to the trial number in the appropriate table. This
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catalyst showed little activity at -196 °C, but had good activity at a higher temperature. The

temperature of maximum activity was determined using slurry baths to be -158 °C, and this

temperature was used to calculate all 13' values. Hydrogen was determined to be the best

choice for the activation of a ruthenium catalyst. By heating at 335 °C for 4 h in 1-12,a 13' of

3.8 was calculated (1). This is compared to a value of 6.7 for the same conditions in He (2).

However, by increasing the temperature to 450 °C in H2, the ff dropped to 3.3 (3). Further

increase of temperature to 550 °C was counterproductive as 13' increased to 3.9 (4). Further

increase of the time to 8 h had little effect on activity (12). All of these trials were done with

the same activation and reactant gas pressure. From this it was postulated that Ru ° was the

active catalytic species, not Ru m. Increasing the activation gas pressure from 20 to 200 psi

had little effect on activity (5,6). The same was true for increasing the reactant 1-12pressure.

Activity did not change as the pressure was increased from 200 through 500 psi (1,8-10).

Since pressure was not a factor, the value of 200-250 psi was used, with 200 psi being the

minimum pressure needed to get the reactant H2 through the catalyst bed.

The effects of using two gases during activation was also studied. It was postulated

that by heating in He prior to reduction, water would be completely removed from the system

before reduction. The results of these tests are shown in trials 7 and 11, and seem to have

little effect on activity (13"= 3.5 and 3.2, respectfully). However, if one reduces in H_ at

450 °C, switches to He for 12 h at high temperature, and cools the catalyst to -196 °C in He

flow, a 13 of 8.5 was measured. Exposure of the catalyst at room temperature to 1-12not only

increased I_, but 13"as well. Reheating in He to 450 °C followed by cooling to -196 °C,

nearly reestablished the original activity indicating the overall process was somewhat

reversible. Reversibility means that following exposure of the activated catalyst to room

temperature 1-12the last activity can be regenerated by simply reheating to 450 °C and

cooling to -196°C in He as before. This procedure will be referred as "H2/He activation" the

remainder of the report.
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CB-II-72 wasan 8%Ru/SiO2 catalyst prepared with the same technique as

CB-II-20. The activity test results are shown in Table 11. The results are similar with one

exception; the 13value following H2/l-Ie activation was greater than CB-II-20 (6). It is

unknown why the value went up, although it was important to note that there was an

enhancement. It was also discovered that if the catalyst was cooled directly from reduction

temperature to -196 °C in flowing H 2 using a liquid N 2 bath, there was some 13 improvement

as well. The rational behind this discovery, known as "Flash Cooling" and the "He Effect"

following H2/I-Ie activation, will be discussed in more detail later.

b. Effect of Percent Metal Content

From the previous study, it was determined that the best conditions for activation were

to reduce at 450 °C for 4 h in H 2, followed by a 12 h He purge at 450 °C, followed by

cooling to -196 °C in He prior to testing. It was shown that the 13 and 13"measurements

displayed only slight variation when the activation temperature ranged from 300 to 500 °C.

Therefore, the initial comparison of most catalysts will be reported using 13"while activating

at 450 °C, with H2/I-le activation results reported as well.

Activities for all RuC13 precursor catalysts and their varying Ru weight percents are

shown in Table 12. CB-II-15, with only 0.1% Ru, showed little activity at any

temperature (1-2). But, by adding just 1% Ru, a 13' of 5.0 (4) was achieved. Further

increases of Ru gave further increases in activity (6, 8, 10), until the 13' of 3.3 was

observed for 8% Ru in CB-II-20 as described above. However in CB-II-46 with 14% Ru,

there was a decrease in activity (13).

The use of He as the sole activating gas gave negative results for all catalysts tested

(1, 3, 7, 9). However, following I-12reduction, there was a "He Effect" as before. CB-II-19,

with 4.4% Ru, had activity at -196 °C, but was not as active as CB-II-20. The 13' was 36.0,

compared to 8.5. Increasing Ru content to greater than 8% had a negative effect on the
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"He Effect" 13 as well. For CB-II--46, 13 increased to 15.2 (15). Catalysts were also prepared

to study the effects of the Ru precursor metal on activity, and an entire range of metal

loadings were prepared. However, the majority of this effort was spent testing the = 8% Ru

catalysts.

c. Effect of Metal Precursor

Tables 13 and 14 show the activity of a range of Ru catalysts prepared with

Ru(NO)C13 and Ru(NO)(NO3)a, respectfully. For the Ru(NO)CI 3 catalysts, 13' activity

increased with increasing metal content, but had a definite maximum associated with

ruthenium content (1-4). While testing CB-II-24 (9.2% metal loading), it was demonstrated

that following reduction, heating in He followed by cooling to -196 °C in He had an effect

similar to other catalysts (5). 13' was 13.5 compared to over 75 when reduced and cooled in

H 2. Further heating in He had an adverse effect, as 13increased slightly (6, 7). Although the

majority of activity was regained following exposure to room temperature 1-12,it is felt that

the activity lost due to repeated heating is due to sintering.

Similar results for ff are found for the catalysts prepared with Ru(NO)(NO3)3.

The same trend of 13'decreasing with increasing Ru loading followed by a subsequent

increase in 13' for high metal loading is evident (1, 3, 7). The main difference is in the -196

°C activity following H 2/He activation (5, 9). While enhancement is observed, (13 = 33.7 for

CB-II-27; 30.0 for CB-II-29), it not nearly as great as observed for ruthenium catalysts

prepared with chloride containing precursors. Figure 11 illustrates the 13' activity at -158 °C

vs. metal content for all Ru catalysts, while Figure 12 illustrates the enhancement activity at

-196 °C following H 2/He activation.

Conclusions that can be made from the study of these ruthenium catalyst are as

follows. First, Ru catalysts show low activity at -196 °C following reduction in H2. Second,

Ru catalysts all show activity at temperatures wanner than -196 °C; the temperature of
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maximumactivity is = -158 °C. Third, the 13"is more dependent upon metal content and less

dependent upon metal precursor. Fourth, activity is observed at -196 °C if the catalyst is

heated and cooled to -196 °C in He following reduction and prior to exposure to the reactant

H 2. Finally, the amount of this enhancement is dependent upon the metal precursor used.

d. Effect of Platinum Metal Addition

In an attempt to perturb the electronic effects of the ruthenium catalysts, platinum was

added as a second metal, since platinum is known to adsorb and activate H2. 34 In CB-II-44

and 45, the ruthenium loading was 8% with 1% and 3.25% loadings of platinum, respectfully.

As before, the maximum activity was observed at -158 °C with much less activity at -196

°C. In fact, 13"actually increased with respect to CB-II-20. However, there was 13 activity

after reducing conditions and cooling in H 2. These results are shown in Table 15. This is

thought to occur by a process similar to that described in the silicate section. Platinum

particles partially cover some ruthenium sites; the Pt sites have less activity at -158 °C than

Ru, causing 13'to increase. On the other hand, at -196 °C the Pt sites are more active

following reduction without the He treatment, thereby causing 13to decrease. Since neither 13

nor 13' showed dramatic improvements relative to previously established catalysts, the addition

of platinum was not investigated further.

e. Effect of Catalyst Preparation Method

The Ru/SiO2 catalysts discussed earlier were all prepared with the same general

technique: Impregnation with ruthenium, removal of solvent with a rotovap at 50 °C, and

drying overnight at 130 °C. This section will discuss modifications of that technique. Their

effects on the subsequent activity are shown in Table 16.

CB-II-37 was prepared as CB-II-20 except the final drying was done under a room

temperature vacuum instead of in an oven. Results remained consistent with what had been

observed before. There was little activity at -196 °C following reduction and a 13' of 3.2 at
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-158 °C (2). The "He Effect" was also observed, yielding a _s of 15.8 (4). This value was

closer to the 13reported for CB-II-72 (16.6) which was prepared just like CB-II-20 and

CB-II-24 (13.9) than that of CB-II-20 (8.5). To this date we were unable to determine the

cause of this difference and are unable to prove or disprove any hypothesis as CB-II-20 was

completely consumed during earlier testing.

As shown in Figure 12, there is a definite advantage to starting with a chloride

containing ruthenium precursor. It was reported by Miura 35 along with Lu and Tatarchul_ 6

that following reduction there was still residual chloride on the metallic Ru particles on the

silica surface. Miura further reported that by washing the reduced catalyst in hot water and

redrying, the chlorine is removed. 37 By washing CB-II-48, a catalyst prepared using RuCI a,

we expected a catalyst with properties similar to CB-II-29, which was prepared with

Ru(NO)(NO3)3. This was confirmed by the observed "He Effect" 13value of 34.7 (6), higher

than the 13= 15 values reported earlier for catalysts prepared with chloride containing

precursors. Arguments about why residual chloride has an effect on the activity at -196 °C

following "He Effect" activation will be presented later.

2. Ruthenium Ammine Precursor Catalysts

a. Activation Conditions

Catalysts were prepared by the general procedure described by Gay _ and modified by

Wu 29 with the preparation being reported elsewhere in this text. Gay described general

activation conditions for reduction of ruthenium and desorption of the surface. The catalysts

were reduced in flowing H 2 at 350 °C for 4 h. For desorption of the surface, the catalyst was

heated at the same temperature for 12 h under a high vacuum In our case, the flowing He

was used rather than a vacuum for simplicity.
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b. GeneralProcedures

Catalystswerepreparedwith Ru(NO)(NO3)3asthe precursorto the amminewith metal

contentsof 2%, 4%, 8%, 10%,and 12%by weight. However,due to the robustnatureof the

hydrazinereductionduring the catalystpreparation,thehigher rutheniumcontentcatalysts

were isolatedwith lower thanexpectedmetal contents. This wasdue to the splatteringof the

rutheniumsolutionon the sidesof the beaker. Usingthe KOH-KNO3 melt, an accurate metal

content was obtained. The actual metal content was compared to the planned metal content

and the difference was taken into consideration for future preps.

The catalysts were tested only for activity at -196 °C. While 13' activity does exist for

all catalysts, it occurred at a temperature greater than -160 °C, and an accurate temperature

was not obtained. In most cases, the 1_' maximum activity was a much smaller increase over

the 13maximum, probably less than 20%. Due to these two factors, no _l' values were

reported.

c. Effect of Metal Content

The activities for catalysts prepared with RuCNO)(NO3)3 are shown in Table 17. The

values in the third column, _S[H2], indicate activity following reduction and cooling in H 2,

while those in the fourth column, [Y[H2-He], indicate reduction followed by desorption and

cooling to -196 °C in He. As one can see, there is always an increase in activity upon

heating and cooling in He over cooling in H2, in other words, a "He Effect." The effect

chlorine has on the "He Effect" will be discussed shortly. Table 17 also shows what effect

metal content has on activity. With this preparation method, as little as 2% Ru can give a [3

value of 14. By increasing metal content, a 13of 4 was obtained following H 2/He activation.

Additional ruthenium proved to be disadvantageous as the 13value started to increase after a

maximum metal content had been reached. This decrease in activity is shown in Figure 13,

which displays the activity of all Ru catalysts prepared in this study. High activity can also
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bemeasuredif the catalystis cooled in 1-I2from the reduction temperature directly to -196

°C. "Flash Cooling" was done while testing CB-II-92,and a 13of 3.3 was measured, which

was even lower than that following He desorption. This technique was not attempted on

other catalysts; it was done only to confirm if the "Flash Cooling" would work on this class

of catalysts.

d. Effects of Precursor Metal and Preparation Method

Catalysts were also prepared using RuC13 and Ru(NO)C13, respectfully. The metal

content was intended to be 8% by weight, but varied due to the splattering problem described

earlier. Activities for these catalysts are shown in the top two lines of Table 18. As one can

see, catalysts prepared with a ruthenium chloride precursor had very low activity, even

following He desorption of the surface. This would indicate that having chloride present

while working up the catalyst modifies the surface in such a way as to deactivate the catalyst.

CB-II-89W was prepared by washing with hot water to remove residual chlorine. If

the surface of CB-II-89 is similar to 88 and the only difference is the presence of chlorine;

then by removal of chlorine, the activities should become similar. This is clearly not the

case. As shown at the bottom of Table 18, activity decreases even more following this

treatment. It would appear that the chlorine has to be either not present entirely or removed

before the catalyst is dried/reduced.

CB-II-125 was prepared by the procedure described by Gay, without the modification

described by Wu. The modification was to soak the support in ammonium hydroxide before

introducing the reduced ruthenium solution. In the case of CB-II-125, the ruthenium was

added to the support before reduction by hydrazine without soaking in ammonium hydroxide.

It was stated by Gay that having the metal and support in contact during reduction would

increase the metallic dispersion. The only exception to his procedure was that Ru(NO)(NO3) 3

was used instead of RuC13. This eliminated the need to wash the wet catalyst with aqueous
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ammoniato removechloride.

CB-II-130 waspreparedusingthe sametechniqueas CB-II-125, exceptRuC13

wasused. Becauseof this thecatalystwaswashedin cold 1M aqueousammoniato remove

chlorine. This experimentwasperformedto seeif high activity at -196 °C existedif the

chloride wasremovedprior to catalystdrying or final reduction.

As Table 18 illustrates,thereis extremelyhigh activity for CB-II-130 at -196 °C.

Becausethis catalysthasa lower metal contentrelative to the catalystspreparedusing

Ru(NO)(NO3)3,it is felt that catalystspreparedtaking advantageof this techniquewould have

comparableactivities to thosepreparedwithout chlorine beingpresentaltogether. This is an

importantfact shouldthesecatalystsbepreparedcommerciallyasthecost of Ru(NO)(NO3) 3

is over twice that of RuC13.

3. (rl4-cyclohexa-l,3-diene)(rl6-benzene) Ruthenium (0) Precursor Catalysts

Results of the catalytic testing of catalysts prepared by the impregnation of

(rl4-cyclohexa-l,3--diene)(rl6-benzene) Ruthenium (0) to a silica support is presented in

Table 19. It is felt the following generalizations can be made about this class of catalysts.

First, the ff activity changed very little with the percent metal loading or with the choice of

activating gas. The temperature of maximum activity seemed to decrease slightly with

increasing metal content. However, due to the inaccuracy of the measurement of that

temperature, a strong conclusion cannot be made. Second, the 13value at -196°C did show a

definite decrease with increasing metal loading. It was also observed that the activity at -196

°C was generally greater when He instead of H 2 was used as the gas of activation. This is an

expected result since the organometallic ruthenium precursor is already in a zero valent state

and is deposited on the support following the thermal decomposition of the organic ligands.

Helium is used to simply sweep these fragments along with any solvent away from the

catalyst. The use of H 2 would achieve the same thermal decomposition of the precursor, but
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the presenceof H 2 may facilitate slight sintering of the catalyst, thus reducing the active

surface area and activity. Another possible explanation is that of the H 2 poisoning of the

catalyst as described in the previous sections. No attempts were made to activate the catalyst

with H 2 followed by He as the organometallic ruthenium precursor work was completed

before the 1-12poisoning was observed in the other catalysts.

C. Characterization of Ruthenium and Ruthenium Ammine Precursor Catalysts

1. H_ Adsorption

When comparing the activity of traditionally prepared ruthenium catalysts with the

ammine precursor catalysts, it was found that the latter catalysts had higher activity

throughout the temperature range tested, but especially at -196 °C. It is felt that the major

difference between these catalysts is the metallic dispersion. It has been previously stated

that the ruthenium ammine precursor catalysts have high dispersions. 2s We wished to confirm

this fact and see if any correlation existed between the dispersion and the catalytic activity,

especially at -196 °C.

Table 20 displays the ruthenium metal dispersion for catalysts prepared with

Ru(NO)(NO3)3 as a precursor to the ammine complex. As one can see, the dispersion is quite

high for ruthenium supported on silica, generally over 20% regardless of metal content. The

catalysts do show higher metallic dispersions at lower metal content, which is expected. The

final column in Table 20 indicates the number of ruthenium atoms on the catalyst surface per

gram of catalyst. This value is felt to be highly indicative of how active a catalyst is. The

catalyst with the highest number of active metal sites on the surface should be able to convert

the most H 2. However, since activity is measured by determining the weight of a catalyst

needed to convert a known amount of H 2, the catalyst with the highest number of surface

atoms per gram should be the most active.

Figure 14 is a plot of the activities of the catalysts in Table 20 vs. the total number of
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rutheniumatomspergram of catalyst; the triangles indicate catalysts prepared by ion

exchange using Ru(NO)(NO3) 3. As one can see, there is a definite correlation between the

activity at -196 °C and the ruthenium surface atoms per gram catalyst. As expected, an

increase in surface atoms generally means an increase in the catalytic activity. However,

there does seem to be a slight decrease in activity with a large number of surface ruthenium

atoms as well. One possible explanation for this is that a large number of surface ruthenium

atoms also indicates a smaller ruthenium particle size. With the smaller particle size, there

may be some geometric considerations with the adsorption and desorption of the reactant H 2

since the active sites will tend to be closer together. Another possible explanation is that

smaller ruthenium particle will have a weaker interaction with an incoming H 2 molecule. 35

This may shorten the residence time of the H 2 on the surface, thereby decreasing activity. At

this time, the cause of this observation is still undetermined.

The square marker in Figure 14 indicates CB-II-125, a catalyst prepared without

using the ion-exchange method. As one can see, when the activity is plotted vs. the number

of surface ruthenium atoms per gram, the catalyst fits in very nicely with the others,

indicating there is little dependence upon the actual ammine precursor preparation technique.

Table 21 shows the dispersion of ammine precursor catalysts prepared using a chloride

precursor. As shown in the first two entries, the use of a chlorine precursor definitely

decreases the dispersion available through this technique. Since the activities of these two

catalysts were also poor, _ values of 42 and 61 for CB-II-89 and 93, respectfully, following

HjI-Ie activation, it is felt that using a chloride precursor reduces dispersion greatly, hence

decreasing activity. In other words, chlorine precursors make poor catalysts, especially with

RuC13. However, since the dispersion of CB-II-93 is somewhat respectable, it is felt that

residual chlorine may also decrease activity by an electronic effect as discussed earlier. The

chlorine may weaken the Ru-H2 interaction such that the mean lifetime of the adsorbed

species is shortened so there is not adequate time for an o-p hydrogen interconversion to take
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place.

The second two entries in Table 21 demonstrate attempts to remove chlorine from the

catalyst. In CB-II-89W, in which chlorine was washed following drying and reduction, the

dispersion and activity (_ = 45) changed little. However, if chlorine was removed prior to

drying as in CB-II-130, the dispersion and activity was as if a non--chlorine precursor was

used. Activity vs. surface ruthenium atoms per gram for CB-II-130, plotted in Figure 14, is

represented by a circle. As one can see, this catalyst fits in nicely with other catalysts

prepared by different methods without chlorine. This result would support the earlier

hypothesis that the presence of chlorine during the catalyst drying process causes the

formation of a catalyst with poor dispersion.

For comparison, the metallic surface areas of selected traditionally prepared ruthenium

catalysts were measured. These results are presented in Table 22. It is quite obvious that the

metallic dispersions are much lower. This would indicate large particles and a smaller

number of surface ruthenium atoms per gram of catalyst. This further supports the hypothesis

that higher dispersions will yield higher activities.

An interesting observation is made when one compares the ruthenium atoms per gram

of catalyst and the activity of the chlorine containing traditional catalysts to those of the

chlorine containing ammine precursor catalysts. With the traditional chlorine catalysts, a H 2

/He activation _ value of approximately 15 was obtained. However, with the ammine

precursor chlorine catalysts, the H2/He activation [3 values were greater than 40. The

ammine precursor chlorine catalysts were less active, even though there were a larger number

of surface atoms per gram. This is a complete opposite to what was observed with the

non-chlorine containing catalysts, both traditional and ammine precursor.

It is felt that this can be explained with the following argument. As discussed in

earlier, the "He Effect" is caused by activated adsorption of H 2 followed by desorption with

He. This is caused by the addition of electropositive chlorine on a large ruthenium particle.
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Sincetherutheniumparticle is large,thechlorine is not felt to bea geometrichinderanceto

incoming H2,yet it canstill causean electroniceffect.

However,in thecaseof theammineprecursorcatalysts,it is a different story. Even

thoughthe catalystshavea greaternumberof surfacerutheniumatoms,the "He Effect"

activity is lessthan for a traditionalcatalyst. Reasoningbehindthis is two-fold. First, for

theammineprecursor catalysts, a higher dispersion means smaller ruthenium particle size.

This means the residual chlorine is sitting on a much smaller ruthenium particle. In this case

it is more likely to be deactivating the catalyst through a geometric pathway. The chlorine

simply blocks the path of the incoming H 2 to the surface. Second, with a smaller metal

particle, Lu and Tatarchuk stated that the chlorine electronic effects with the metal would be

greater. Knowing this, it is possible that the interaction between the incoming 1-12and the

activated Ru would be lessened, especially at low temperature. This would cause the H 2

residence time to decrease, decreasing activity. At the present time it is not known if one, or

both, of the above hypothesis are responsible for the above observations.

2. Low Temperature Susceptibility

Low temperature magnetic susceptibilities of selected catalysts were valuable in

explaining the behavior of different ruthenium catalysts. Without these data, the previous

assumptions with respect to I]' could not have been made. A much simpler hypothesis to

explain why ruthenium catalysts show a maximum activity would be that the magnetic

susceptibility of the catalyst varies with temperature. It reaches a maximum value at a

temperature corresponding to the temperature of maximum catalytic activity. This maximum

susceptibility would then decline to -196 °C. It was therefore necessary to measure the

magnetic susceptibilities vs. temperature of various catalysts to see if any maxima exist,

which would support the above hypothesis.

The first catalyst tested was AP. It was tested following activation at 200 °C for 2 h
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in a He flow. The magnetic susceptibility was plotted vs. temperature in Figure 15. This

experiment displays that the magnetic susceptibility of the catalyst increases with decreasing

temperature. This is what is expected for a paramagnetic metal. Further evidence for the

paramagnetic character of this catalyst is shown in Figure 16. For a paramagnetic species, the

plot of the inverse susceptibility vs. temperature should be linear.

As shown in Figure 15, the magnetic susceptibility nearly doubles over the

temperature range studied. However, if one looks at the plot of activity vs. temperature over

the same range, there is little change in activity. In fact, any difference displayed in activity

would be opposite of what would be predicted solely by using susceptibility. This implies

that there are other factors which outweigh the effects of the magnetic susceptibility.

Ruthenium catalysts were the next to be tested. The magnetic susceptibility of

CB-II-24 without activation is shown in Figure 17. As one can see, the magnetic

susceptibility is completely different. First, the catalyst showed a diamagnetic behavior,

meaning the catalyst was repelled by the applied magnetic field. Also, the calculated

magnetic effect was approximately two orders of magnitude smaller than that calculated for

AP. Finally, there is little variation of the magnetic susceptibility with change of temperature.

The small variation found occurred at temperatures closer to -196 °C, where the catalyst

appeared to be less diamagnetic.

The temperature dependence of the magnetic susceptibility of CB-H-24 following

reduction at 350 °C in H 2 is shown in Figure 18. This experiment was done to determine if

magnetic susceptibility would change by changing the oxidation state from Ru m to Ru °. As

shown, the curve of Figure 18 is very similar to Figure 17. The only difference is that the

reduced catalyst had a smaller diamagnetic effect. It is felt that this is simply caused by the

catalyst having a higher weight percent of Ru following reduction.

For comparison, other ruthenium catalysts prepared by Fubara _ and Wang 39 were

tested. These catalysts were all Ru ° catalysts, but prepared by different methods. In Figure
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18, the magneticsusceptibility of BF-40CI is shown. This was a ruthenium catalyst with a

24% Ru metal loading, supported on alumina. Catalytic properties of this catalyst were very

similar to the traditionally prepared ruthenium catalysts, with a 13value of 5.7 following

reduction at 400 °C and a 13"of about 1 at -154 °C. It is interesting that this catalyst showed

a positive paramagnetic response at temperatures lower than -160 °C, but was slightly

diamagnetic at temperatures greater than -160 °C. Once again, the order of magnitude of the

measured magnetic susceptibility is over a hundred times less than that of AP.

The magnetic susceptibility of WW-17 (5.7% Ru/SiO2 ) is shown in Figure 20. This

catalyst was prepared by the impregnation of the organometallic compound

(rl4--cyclohexa-l,3--diene)(rl6-benzene)ruthenium(0) onto a silica support. The aim of this

work was to impregnate a Ru ° source and achieve an active metal by pyrolyzing the catalyst

in N 2. The activity of this catalyst was very similar to traditional catalysts with a 13value of

43.4 and 13' of 2.85 at -154 °C. This was following H2 activation at 400 °C for 4 h. The

major differences between this catalyst and other Ru catalysts tested is that a paramagnetic

response is shown. This response varied little throughout the entire temperature range

measured.

3. X-ray Diffraction

In an attempt to further characterize the ruthenium catalysts, X-ray diffraction powder

patterns were collected. The reasoning behind this was two fold. First, we wanted to

establish chemical purity of the samples. X-ray diffraction can be used as an analytical tool

to fingerprint various components of a catalyst. Second, one can use the line broadening of

selected peaks to determine the metallic particle size. This information was helpful to

determine if there was good dispersion of the ruthenium, as smaller particles lead to higher

dispersions. These experiments were especially important before the capability to do active

gas chemisorption was obtained. With regard to catalyst purity, we wished to look at a
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catalyst following reduction to determine what metallic phases remained. This was important

to determine which oxidation state of ruthenium was active for ortho- to para-I-I 2

conversion; and if one particular state was active at one temperature while a different state

was responsible for activity at another temperature. Before catalyst X-ray diffraction patterns

(XRD) could be collected, the XRD's of ruthenium compounds which could possibly remain

following reduction needed to be established as standards.

Figure 21 shows the XRD for ruthenium metal following the reduction of RuC13 at

650 °C in H 2. The reduction temperature was high to promote large particle growth. As one

can see, there are 6 major lines between 30 and 80 degrees, with the most intense line at 44

degrees.

Figure 22 displays the XRD for RuO2, prepared by air-oxidation of ruthenium metal

at 650 °C. The RuO2 is much more complex, with its most intense lines at 35 and 54

degrees, respectfully. The small lines around 44 degrees are believed to be remaining Ru

metal.

Figure 23 displays the XRD for RuC13. The pattern is less sharp because the sample

was prepared without heating and was dried under vacuum before the pattern was collected.

This pattern shows the most intense peak at 44 degrees, which is the same as the most intense

peak for ruthenium metal. In fact, all the peaks match those seen in the ruthenium sample

except for 35 degrees, which matches the most intense peak for RuO2. Therefore, it is

difficult to determine the presence of RuC1 a by XRD alone.

The XRD of CB-II-46 following reduction at 450 °C is shown in Figure 24. Several

important features of this XRD are noteworthy. The 6 lines all match lines found in the pure

ruthenium sample. There was no line at 35 degrees which would indicate RuO2. Second, the

lines all show some degree of line broadening when compared to ruthenium metal. In fact,

the particle size was determined using the line at 44 degrees to be -9.5 nm. Using the

formula (Dispersion=l/Particle Size), the metallic dispersion can be estimated at 10.5%. This
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valueis much higher than discussed earlier in this chapter. It is felt that this is due to a

combination of factors. First, there is probable error in the particle size estimation by XRD

line broadening. Usually, the estimate is good to within an error of +30%. Second, there is a

better chance of error in the adsorption studies when a low metallic dispersion is being

measured. Most likely, the weakly bound H 2 was overestimated because of the relatively

small amount of chemisorbed lq2. This overestimation would lead to the calculation of a

dispersion lower than the actual value.

Figures 25 and 26 show CB-II-48 following reduction at 450 °C and following hot

water wash and re-reduction at the same temperature. One can easily see that the XRD's are

nearly identical, indicating there was little change in the surface structure following hot water

wash. This supports the previous claim that any "He Effect" activity lost is due to removed

chlorine and not from other surface changes. The particle size was determined by line

broadening to be 7.5 nm, and the dispersion was 13.5%, both expected changes from

CB-II-46 since metal content was decreased.

D. Discussion and Conclusions of Ruthenium Catalysts

1. Hypothesis for Activity > -196 °C

To help us understand why one particular catalyst would have an optimum temperature

of enhanced activity, and a lower temperature with almost no activity, one must look at the

basic process occurring during an ortho- to para-H 2 transition.

For a gas-phase ortho-H 2 to be converted to a gas-phase para-H 2, it first must be

adsorbed on the catalyst. For this, there is a corresponding rate constant and change in

enthalpy (AH) of adsorption. For the adsorption of H 2 on Ru, especially at low temperatures,

it is felt that this process goes fast and involves a fairly strong interaction with the surface.

Secondly, the ortho-H 2 adsorbed on the surface must have a sufficiently long residence time
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to undergonuclearspin flip required for conversion to para-H 2 adsorbed on the surface.

Finally, this adsorbed para-H_ must desorb from the surface to a gas-phase para-H 2. The

desorption process has a rate constant associated with it as well. This complete process is

shown schematically in Figure 27. Since the adsorption of H 2 at low temperatures on a Ru

surface is fast, one can eliminate the first step as a factor. The second step, however is of

particular interest. It is known that as the temperature is lowered, the residence time of an

adsorbate on the surface increases. *° At a certain temperature, the H 2 will remain on the

surface for an optimal conversion time, followed by its desorption. But at lower

temperatures, the H_ will remain adsorbed on the surface even longer following conversion

from ortho- to para-H 2. This blocks the path for other gas-phase reactant o-H 2 to get to

the surface. It is felt that these molecules will adsorb as a subsequent layer atop the

pre-existing first layer. But as shown previously in the theoretical calculations for this

reaction, an increase in the radius of reactant H 2 molecules to the active metal by the

adsorbed layers, will cause an exponential decrease in the conversion for the upper layers.

It is felt that this same hypothesis applies for the silicate chemistry as well. However,

since the AH of adsorption is less for the metals in which silicates were prepared (Ni, Fe,

Mn), the residence time will be shorter than those associated with Ru at the same

temperature. In fact, it is quite possible that at a temperature lower than -196 °C, there will

be a maximum activity, as displayed for the Ru catalysts. However, since this study does not

allow for testing at temperatures colder than -196 °C, data which might support this

hypothesis were not available.

2. Hypothesis for "He Effect" Activity

The above explanation rationalizes why a traditional ruthenium catalyst will show a

maximum activity at a given temperature and how it is related to the rate of

desorption of the converted H 2 along with the AH of adsorption. A similar phenomenon can
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help to explain why thereis enhancedactivity after the heating in He and the cooling to -196

°C in He as well as cooling directly from the reduction temperature to -196 °C.

It is well known that H 2 will irreversibly and dissociatively adsorb on Ru at room

temperature. 35'41'42 This adsorption has a relatively large All of adsorption. Following

reduction and as the catalyst cools to room temperature, the surface will be completely

covered by a H 2 layer. Therefore, for any ortho-H 2 to be converted to para-H 2, it has to

physisorb on the surface of the chemisorbed layer as a second layer. This can also be

considered as reversible 1-12which adsorbs onto the irreversibly adsorbed layer. As one

lowers the temperature from 23 °C. The gas-phase H 2 will start to increase its residence

time on the nth layer of H 2 instead of the metal surface.

However, if one heats in He and then cools in He to -196 °C in the same gas, the

activity is enhanced, and one can be assured that the catalyst surface is clean of any adsorbed

gases, including H 2. Following cooling in He and the introduction of reaction H2 at -196 °C,

there will be adsorption on the surface. However, since the sample is at cryogenic

temperatures, the only H 2 adsorbed will be that with a low M-I of adsorption. There is not

enough energy in the system to furnish the activation energy for chemisorption which gives

the irreversible 1-I2 with a large AH. This should help to lower the distance from the outer

layer to the surface, thus increasing activity. This is shown visually in Figure 28a, where a

rectangle indicates a layer of adsorbed H2.

It has been shown in Figure 12 that residual chlorine on the catalyst surface can

increase the effectiveness of the He effect Lu and Tatarchuk have shown that residual

chloride attached to ruthenium particles on the surface will cause activated 1-12adsorption, a5

meaning the AH for dissociative adsorption is increased for those catalysts containing residual

chlorine. For H 2 to dissociatively adsorb on ruthenium, there has to be a donation of

electrons from ruthenium to hydrogen. However, since chlorine is electronegative, it

withdrawals electron density from ruthenium. This makes the formation of the Ru-H bond
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moredifficult, thusrequiring a higherenergyof activation. This haslittle effect on a catalyst

cooled from the reduction temperature to room temperature in H 2. At the higher temperatures

of reduction, there is sufficient energy for adsorption and the surface is covered as before.

However, following the 1-12/He activation, since the n/-I for H e adsorption is higher, there

should be less H 2 adsorbed on the surface than compared to a ruthenium surface without

chlorine present. This lowers the distance to the surface for a gas-phase H 2 and should

increase activity. A catalyst with residual chloride is portrayed following cooling in H 2 and

H 2/He activation in Figure 28b.

A similar phenomenon occurs when the catalyst is "Flash Cooled", meaning the

catalyst is cooled directly from reduction temperature to -196 °C using a liquid nitrogen bath.

At the high reduction temperatures, there is very little H 2 adsorbed on the catalyst surface. 1-12

is known to form a very strong interaction with ruthenium at room temperature or warmer,

but by cooling directly to -196 °C the H 2 is not allowed enough time to interact and be

strongly adsorbed with the ruthenium surface, thereby creating the same situation as discussed

in the "He Effect" and portrayed in Figure 28b.

3. Conclusions for Ruthenium Catalysts

While comparing the catalyst prepared with a ruthenium ammine precursor to those

prepared with traditional metal precursors, there are two glaring differences. The ammine

catalysts which started from Ru0NO)(NO3)3, had much greater activity than their

corresponding traditional preparation counterparts. This was true for testing after reduction

and cooling in H 2 as well as reduction in H 2 and desorbing/cooling in He. Second, there was

no enhancement following He desorption/cooling for ammine catalysts starting with a metal

chlorine precursor. In fact, the ammine catalysts starting from a ruthenium chloride source

lost considerable activity compared to the non-chlorine counterparts under the differing

activation conditions. The only catalyst prepared with a chlorine precursor which had good
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activity was CB-I-130 in which the chlorine was removed prior to drying of the catalyst.

When asking the question of why the two preparation methods yield such different

results, one must look at the basic differences between the two. It is known that traditional

Ru catalyst have relatively low surface areas, usually with a maximum dispersion of 0.2 at

low metal loadings? °'43 Dispersions for these ammine catalysts have exceeded 0.3 with

dispersions up to 0.6 to 0.8 reported for catalysts with lower metal loadings. It is felt that

with the higher dispersions possible using an ammine precursor, more active sites are

available per unit mass, to convert more ortho-H2 to para-H2. Even though there is a "He

Effect" on the ammine catalysts, which indicates that 1-12poisoning is occurring on the

surface, there are more active sites on the ammine catalyst's surface to get poisoned. If the

surface of an ammine catalyst is poisoned the same amount as a traditional catalyst, the

ammine catalyst should have a higher activity due just to more active sites. This discussion

of activity increasing with higher dispersion would suggest that ortho- to para-H 2

interconversion is a structure sensitive reaction, meaning the rate of the reaction is directly

related to the changes in particle size and dispersion.

The addition of chlorine via the use of a chloride containing precursor completely

deactivates the catalyst. Removal of chlorine using a hot water wash has little effect on this

deactivation. Alternatively, if the chloride is removed prior to the drying of the catalyst, the

activity is the same as if the chlorine was never present.

There are several possible arguments to explain the observation. Lu and Tatarchuk

state that there are two possible reasons that chlorine may act to cause activated adsorption. TM

Since the formation of a Ru-H bond requires donation of electrons from the Ru to the

gas-phase H 2, electronegative chlorine will cause a decrease in the local electron density of

the ruthenium, thereby increasing the activation energy to form that bond. Alternatively, the

chlorine may act as a geometric barrier in which it inhibits the surface movement of 1-12and

imposes a kinetic barrier on the adsorption process.
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In the caseof the traditional preps, it was stated earlier that an electronic effect is

occurring. A small chlorine atom is sitting on a much larger Ru cluster that is perturbing the

electronics, but not blocking the path of a H 2 to an active sites. In the case of the more

highly dispersed ammine catalyst, the geometric explanation is more logical. A chlorine sits

on a much smaller Ru cluster, thereby blocking most of the ruthenium sites from the H 2.

Lu and Taterchuk also stated that the electronic effects were more pronounced for a

more highly dispersed surface. 3_' Another possible explanation is that the activation energy

becomes too great for an interaction between the surface and a reactant H 2. Without a surface

interaction, the distance between the surface and H2 would be large, decreasing activity.

A third possible alternative explaination would be that the presence of chlorine during

the drying process causes the formation of a very poor catalyst, one with a very low metallic

surface area. This will be discussed in more detail within the next section.

4. Conclusions of Physical Characterization

Conclusions made from the active gas adsorption study are: 1) The dispersion of the

ammine precursor catalysts without chlorine are greater than traditional catalysts, independent

of preparation technique; 2) The ammine chlorine precursor catalysts have decreased

dispersions and decreased activities, relative to all catalysts; 3) The traditional catalysts, both

with and without chlorine, have further decreased dispersions but activities greater than

ammine chlorine precursor catalysts; 4) For the ammine precursor catalysts, if chlorine is

removed prior to drying, the catalyst is as active as the non-chlorine catalysts.

Several conclusions can be made from the low temperature magnetic susceptibility

studies. First, there is little variation of magnetic susceptibility with temperature for

ruthenium catalysts. Second, bulk ruthenium catalysts can show diamagnetic behavior.

Third, for the most part ruthenium catalysts showed lower magnetic susceptibilities than

nickel silicate. Finally, there is little correlation between a high magnetic susceptibility and
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high activity. Therefore,it wasconcludedthat magneticsusceptibilityis not a major factor in

determiningcatalyticactivity or helpingto explain 13.'

Severalconclusionscanbemadefrom the XRD study. The metal rutheniumwas

determinedto be the major, (if not the only) oxidation stateof rutheniumpresentin the

catalyststested. Therutheniumlines of a reducedcatalystwere broadened,indicating smaller

particlesizes. The amountof this broadeningwasdependentuponmetal loading.

Dispersionscalculatedfrom theseparticle sizeswerehigher thanby othermethods,most

likely due to interferencecausedby the silica support.
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The main goal of this study was to develop and improve on existing catalysts for the

conversion of ortho- to para-hydrogen. Starting with a commercially available Air Products

nickel silicate, which had a 1_value of 20, we were trying to synthesize catalysts that would

be an improvement to AP. This was accomplished by preparing silicates with various metals

as well as different preparation methods. We also prepared supported ruthenium catalysts by

various techniques using several metal precursors to improve present technology. What was

also found was that the activation conditions prior to catalytic testing was highly important

for both the silicates and the supported ruthenium catalysts.

While not the initial focus of the research, we made some interesting observations into

the adsorption of H 2 on ruthenium. This helped us to get a better understanding of how

ortho- to para-H 2 conversion takes place, and what features in a catalyst are important to

optimize activity.

Reactor design was the final area in which some interesting conclusions were drawn.

As discussed earlier, the reactor catalyst bed must be constructed using straight 1/8" OD

stainless steel tubing. It was determined that the use of 1/4" OD tubing caused two problems.

First, the radius from the center of the bed to the wall was too great for thermal equilibrium.

Since the reaction of ortho- to para-H 2 is exothermic, the catalyst bed center was warmer

than the edges. Second, the catalyst bed was too shallow using a 1/4" tube. This caused

reactant blow-by which was thought to decrease the measured activity when the flow rate

was increased. The 1/8" tube corrected both of these concerns.

While preparing and testing the transition metal silicates, some interesting conclusions

were drawn. It was first concluded that nickel was the best candidate for preparing metal

silicates. All other metal silicates had much lower activities relative to AP nickel. It was

also observed that by increasing the catalyst activation temperature in He from 150 °C to 300
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°C, and by decreasing the activation time from 4 h to 2 h, the 13decreased from 20 to 15.7.

By refluxing in 2,2-DMP, a 13of 16 could be achieved in 40 min. It is felt that the increased

activity is the result of increased dehydration of the catalyst. This can increase activity in

two possible ways. First, increased dehydration causes decreased catalyst weight, which

would essentially mean there are more active sites per unit mass. Second, by removal of

adsorbed water, the _ would have a clearer path to an active site. The H2 molecule should

also have a shorter distance to an active site, which should increase activity.

It was also concluded that an increase in the total pore volume and total surface area

of a silicate correspond to an increase in activity. Subsequent modifications in the catalyst

prep, which included washing and refluxing the catalyst in MeOH, as well as preparing the

catalyst in an ethylene glycol solution, all increased total pore volume. The 13value

decreased from 17.1 to 11.0 following all modifications. The increase in pore volume is

thought to promote the mass transport of H2 through the catalyst particle, which should

increase the ease of a reactant H 2 molecule to reach the surface and be converted. An

increase in total surface area could increase the number of active sites which in turn, should

increase activity.

However, that ruthenium supported on silica was the most active catalyst for the

conversion of ortho- to para-H2. Following reduction for 4 h at 450 °C in H2, it was found

that a 13' of 3.3 at -158 °C was obtained. This activity varied slightly with metal precursors.

The catalysts prepared using a ruthenium precursor containing chlorine were slightly more

active than those prepared without chlorine. The activity also varied with metal content. The

activity increased with increasing metal content for all catalysts, until a maximum metal

content was achieved. It is believed that the maximum metal loading is between 8 and 10

percent by weight.

As stated before, the activity was dependent upon the activation conditions. By

heating the catalyst in He following reduction and by cooling the catalyst to -196 °C in He
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prior to 1-12introduction, a 13value of between 8 and 15 was obtainable for traditional

ruthenium catalysts prepared using a metal precursor containing chlorine. For a catalyst

prepared with a non-chlorine containing precursor, or a catalyst in which the chlorine was

washed out, the "He Effect" 13increased by up to a factor of 4.

As stated earlier, there axe two hypotheses which explain why the traditional

ruthenium catalysts have an optimal temperature for maximum ortho-Hz conversion, and why

there is a "He Effect" and why chlorine containing precursors give increased H2/lie

activation activity. The maximum activity at an optimal temperature is believed to be

controlled by the rate of desorption of an H 2 molecule after it has been converted from the

ortho-H_ to para-H2 form. It is felt that the residence time of the adsorbed H2 molecule

increases as the temperature decreases. At a certain temperature, -158°C for the traditional

ruthenium catalysts, there is an optimal residence time for conversion from ortho- to para-

H 2. As the temperature decreases and the residence time increases, it is felt that the adsorbed

para-H_ blocks the path to the surface for incoming ortho-H 2 and subsequently lowers the

rate of conversion and activity of the catalyst.

The "He Effect" is believed to be simply caused by an adsorption/desorption

phenomenon of the reactant hydrogen. H2 is known to disassociatively chemisorb on

ruthenium at room temperature. The heating of the catalyst to 350 °C or greater in He will

desorb the surface of chemisorbed 1-I2; by cooling to -196 °C in He prior to reactant H2

exposure will help to keep the irreversible chemisorption of H2 to a minimum. This will

reduce the distance for an incoming H 2 molecule to the surface, which should increase the

rate of conversion.

The use of a chlorine containing ruthenium precursor increases the "He Effect" by the

presence of residual chlorine on the catalyst surface following reduction. Residual chlorine, an

electronegative element, is known to withdraw local electron density from the ruthenium

surface. Since the disassoeiative chemisorption of hydrogen requires the donation of electrons
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from the surface ruthenium to the hydrogen to form a Ru-H bond, the presence of chlorine

should increase the activation energy and make that Ru-H bond harder to form. Therefore,

following the H 2 activation and after the catalyst has been cooled to -196 °C in He, it should

be even harder to form a Ru-H bond. This should lower the number of chemisorbed

hydrogens on the surface and increase the rate of ortho- to para-H 2 conversion at -196 °C.

This is caused by the decrease in the distance between a gas-phase H 2 molecule and the

surface, as well as open more active sites for physisorption.

Another class of ruthenium catalysts were prepared, this time through the impregnation

of a Ru r_ ammine complex, prepared by the hydrazine reduction of various previously used

ruthenium salts. This preparation technique is known to create a highly dispersed ruthenium

surface, something that is known to be hard to accomplish on silica support by standard

impregnation techniques and with common ruthenium precursor salts.

The activity at -196 °C of the ammine precursor catalyst class, in which the

ruthenium ammine was prepared using Ru(NO)(NO3)3, was greatly increased, as was the

metallic dispersion of the catalysts when compared to other traditional ruthenium catalysts

preps. This catalyst class was highly active following both the normal reduction and cooling

in H 2, as well as following the H 2/He activation. Since this class of catalyst is more highly

dispersed, there are more active sites available for ortho- to para-H 2 conversion, thus

causing an increased "He Effect". This increased dispersion will affect the activity of a

catalysts in which there was no _ desorption prior to testing. Since there is a higher

dispersion, there will be a greater number of "H 2 poisoned" ruthenium sites than a similar

catalyst prepared with traditional impregnation techniques. If the degree of poisoning is

consistent for both classes of catalysts, the ammine precursor catalysts should have higher

activity, and experimentally, this is the case.

The increased dispersion also affected the measurement of I_'. As noted earlier, the

difference between the maximum detector response and the detector response at -196 °C was
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normally less than a 20% increase. It is also felt that the temperature at which this maximum

ortho-H 2 conversion occurs is at a temperature lower than the -158 °C measured for a

traditional catalyst. It would appear that the smaller ruthenium particle size that is associated

with a more highly dispersed surface, decreases the temperature at which there is an optimal

hydrogen residence time on the surface for ortho- to para-H_ conversion. However, since

this temperature is colder than -160 °C, an accurate temperature was not recorded.

With traditional ruthenium catalysts, it was found that the use of a chlorine containing

ruthenium precursor increased the catalytic activity at -196 °C. This was not the case,

however, for ruthenium catalysts prepared through the ruthenium ammine precursor

intermediate. It was found that the activity at -196 °C, as well as the activity at temperatures

warmer, dropped dramatically from the other ruthenium ammine precursor catalysts prepared

with a non-chlorine containing precursor. If the chlorine was remove prior to catalyst drying

and reduction, the catalyst was as active as if chlorine was never present. But if chlorine was

removed following the drying/reduction of the catalyst, the activity was poor. There are

several possible explanations for this. First, the chlorine can block the path of reactant H 2 to

the surface. This effect would be more pronounced for the smaller particles of a more highly

dispersed surface. Second, smaller ruthenium particles can increase the effect of chlorine on

the Ru-H interaction. It may weaken the interaction such that the residence time for a

reactant ortho-H 2 molecule is short so that the H 2 is not on the surface long enough for

conversion to take place. Finally, the presence of chlorine while preparing an ammine

precursor catalyst makes a poor catalyst.

In this study, we were able to understand some of the properties in catalyst preparation

as well as catalyst activation conditions that yield high rates of ortho- to para-I-I_

conversion. From the study of both metal silicates and impregnated ruthenium silica

catalysts, it was concluded that catalytic activity increased with the total number of active

sites. With the ruthenium catalysts, information about the properties of H 2 adsorption on a
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rutheniumsurface,aswell as the effect of residual chlorine on this adsorption process were

ascertained by the study of catalytic activity. Further investigation into this topic may include

optimizing the preparation method of the ruthenium ammine precursor catalyst, as well as

further investigation into the ammine precursor catalysts by physical characterization.
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Sample Metal Conc.

CB-I-18 0.1 M

CB-I-19 0.2 M

CB-I-20 1.0 M

CB-I-21 1.0 M

CB-I-24 0.2 M

CB-I-25 0.5 M

CB-I-27 0.1 M (MeOH)

CB-I-28 1.0 M (MeOH)

CB-I-22 1.0 M Cr(NO3)3

Impregnation
Time

4h

4h

2h

12h

20 min

2h

2h

2h

2h

Table 2. Impregnation of Fe(NO3) 3 on CB-I-9M

S_ole Metal Conc.

CB-I-14 0.1 M

CB-I-15 0.2 M

CB-I-16 0.3 M

CB-I-17 0.4 M

Impregnation

Time

2h

2h

2h

2h



Table 3. Activity of Air Products Nickel Silicate
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Activation Conditions

Catalyst Time Temperature

AP 4 h 150 °C

AP 12 h 150 °C

AP 2 h 275 °C

AP 2 h 150 °C

AP 2 h 300 °C

AP 2 h 275 °C

13s = is single point determination at -196 °C

Ga.._s

He

He

He

H2

H2
Vacuum

_s value

20.0

24.0

15.7

> 100

> 100

16.0

Table 4. Activity of Enhanced Air Products

Activation Conditions

Catalyst Time Temperature lY Value

AP 2 h 275 °C 15.7

AP-DMP 40 min 275 °C 16.1

AP-DMP 0 min 23 °C 40.0

AP 0 min 23 °C > 100

AP-M 2 h 275 °C 16.2

AP-R 2 h 275 °C 16.2

All tested with He Activation



Table 5. Iron, ChromiumandManganeseSilicates

67

Catalyst Metal 13' Value

CB-I-1 Fe 49.2

CB-I-2 Fe > 100

CB-I-3 Cr > 100

CB-I-4 Cr > 100

CB-I-13 Mn 20.7

150 °C for 4 h in He

Table 6. Activity of Nickel Silicates

Activation Conditions

Catalyst Time Temperature

CB-I-7 4 h. 150 °C

CB-I-9 4 h. 150 °C

CB-I-9 2 h. 275 °C

CB-I-9M 4 h. 150 °C

CB-I-9M 2 h. 275 °C

CB-I-9MR 1/2 h 300 °C

DML-EG 2 h 275 °C

13' Value

55

60

17.1

14.4

13.3

12.1

11.0

Table 7. Activity for Fe (Cr) Impregnated on Air Products

Activation Conditions

Catalyst Time Temperature

Air Products 2 h 275 °C

CB-I-18 2 h 260 °C

CB-I-19 1 h 260 °C

CB-I-20 1 h 260 °C

CB-I-21 1 h 260 °C

CB-I-27 1 h 225 °C

CB-I-28 1 h 260 °C

CB-I-22 (Cr) 1 h 260 °C

13' Value

15.7

24.3

24.2

75

40

60

22

37



Table 8. Activity of Fe Impregnatedon CB-I-10M
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Activation Conditions

Catalyst Time Temperature lY Value

CB-I-9M 2 h 275 °C 13.3

CB-I-14 45 min 260 °C 10.2

CB-I-15 45 rain 260 °C 10.4

CB-I-16 45 min 260 °C 10.7

CB-I-17 45 min 260 °C 27.3

Table 9. Surface Area and Pore Volume Measurements for Selected Metal Silicate Catalysts

Catalyst Metal Surface Area (m2/g)

CB-I-1 Fe ---

CB-I-3 Cr 125.0

CB-I-4 Cr 85.7

CB-I-13 Mn 225.0

CB-I-9 Ni 250.2

CB-I-9M Ni 397.0

CB-I-9MR Ni 474.5

DML EG Ni ---

CB-I-12 Fe/Ni 195.8

AP Ni 416

Pore Volume (cc/g)

0.55

0.231

0.397

0.440

0.616

0.65



Table 10. Activity of CB-II-20; 8.04% Ru/SiOz RuC1 a Precursor
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Activation Conditions

Time TemE Gas Pressure

Test Conditions

a- a Pressure Trial

4 h 335 °C H 2 20 psi 100 --- 3.8

12 h 335 °C He 20 psi 100 --- 6.7

4 h 450 °C H 2 20 psi 100 --- 3.3

4 h 550 °C H 2 20 psi 100 --- 3.9

4 h 450 °C H 2 200 psi 100 --- 3.4

4 h 335 °C H 2 200 psi 100 --- 3.8

4h 450°C He 20 psi

4 h 450 °C n 2 20 psi 100 --- 3.5

4 h 335 °C H 2 20 psi 100 --- 3.8

4 h 335 °C H 2 20 psi 100 --- 3.8

4 h 335 °C H 2 20 psi 100 --- 3.8

4h 450°C He 20 psi

12 h 225 °C H 2 20 psi 100 --- 3.2

8 h 450 °C H 2 20 psi 100 --- 3.2

8h 450°C H 2 20 psi

12h 450°C He 20 psi

5 min -196 °C He 20 psi 8.5 --- 2.8

1 h 23 °C n 2 20 psi 36.1 --- 3.5

200 psi

200 psi

200 psi

200 psi

200 psx

200 psi

200 psi

300 psi

400 psi

500 psi

200 psi

200 psi

200 psi

200 psi

1

2

3

4

5

6

7

8

9

10

11

12

13

14



Table 11. Activity of CB-II-72
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Activation Conditions Test Conditions

Time TemR Gas Pressure 13' __ Pressure Trial

4h. 450°C H 2 20 psi

Iso-pentane slurry

45 5.9 250 psi

3.7 250 psi

1

2

4h. 4500C H 2 20 psi

Cooled at 100 °C in H 2

4h. 4500C H 2 20 psi

Cooled at 350 °C in H 2

43.4

30.8 44.0

6.9 250 psi

5.9 250 psi

3

4

20h. 450°C H2 20 psi

Cooled at 350 °C in H 2 40.6 55.3 5.2 250 psi 5

4h. 450°C H2 20 psi

1.5 h. 450 °C He 20 psi

5min.-1960C He 20 psi 16.6 26.0

_' indicates single point measurement at -196°C

_m indicates multi point measurement at -196°C

13' indicates single point measurement at -158°C

5.4 250 psi 6



Table 12. Activity of Catalystpreparedwith RuC13Precursor

71

Activation Conditions

Time Tem R Gas Pressure

Test Conditions

___ _ ff Pressure CB-II-#(Wt%) Trial

4h 325°C He 20psi

4 h 450 °C H 2 20 psi

18h 325°C He 20psi

5h 275°C H 2 20psi

4 h 450 °C H 2 20 psi

4 h 450 °C H 2 20 psi

12 h 325 °C He 20 psi

5 h 450 °C H 2 20 psi

12 h 325 °C He 20 psi

5 h 450°C H 2 20 psi

8h 450°C H2 20psi

12h 450°C He 20 psi

5rain -196°C He 20 psi

1 h 23°C H 2 20 psi

5 h 450 °C H 2 20 psi

15 h 450 °C H 2 20 psi

2h 450°C He 20 psi

8h 450°C H 2 20 psi

12h 450°C He 20 psi

5min -196°C He 20 psi

100 --- 100

100 --- 100

100 --- 25.9

100 --- 4.9

100 --- 5.0

100 --- 5.0

100 --- 6.7

100 --- 3.9

100 --- 7.4

100 --- 4.0

200 psi

200 psi

200 psi

200 psi

100 psx

100 psi

200 psi

200 psi

200 psi

200 psi

36.0 52.1 6.6 200 psi

75.0 --- 8.8 200 psi

>75 --- 3.7

35 --- 3.5

15.2 17.4 ---

200 psi

200 psi

200 psi

15 (0.1) 1

15 (0.1) 2

18 (1.1) 3

18 (1.1) 4

18 (1.1) 5

8A (1.9) 6

14 (2.6) 7

14 (2.6) 8

19 (4.4) 9

19 (4.4) 10

19 (4.4) 11

19 (4.4) 12

46 (14.5) 13

46 (14.5) 14

46 (14.5) 15



Table 13. Activity of Ru/SiO2; Ru(NO)C13 Precursor
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Acitvation Conditions

Time Temo Gas Pressure

Test Conditions

ff Pressure CB-II-#(Wt%) Trial

5 h 450°C H 2 20

5 h 450°C H 2 20

5 h 450°C H 2 20

5 h 450°C H 2 20

4 h 450°C H2 20

2 h 450°C He 20

5 min -196°C He 20

4 h 450°C He 20

5 rain -196°C He 20

12h 450°C He 20

5 rain -196°C He 20

1 h 23 °C H 2 20

psi

psi

psi

psi

psi

psi

psl

psi

psl

pst

ps_

psi

100

100

100

>75

13.5 19.3 4.3

15.9 22.4 4.9

18.7 28.7 4.6

57.7 --- 5.5

6.1 200 psi 21 (1.1) 1

3.7 200 psi 22 (3.2) 2

3.8 200 psi 23 (5.9) 3

4.1 200 psi 24 (9.2) 4

250 psi 24 (9.2) 5

250 psi 24 (9.2) 6

250 psi 24 (9.2) 7

250 psi 24 (9.2) 8



Table 14. Activity of Ru/SiO2; Ru(NO)(NO3) 3 Precursor
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Activation Conditions

Time Temo Gas Pressure

Test Conditions

B' Pressure CB-II-#(Wt%) Trial

4h 450°C H 2 20 psi

12h 335°C He 20 psi

4 h 450 °C H 2 20 psi

12h 335°C He 20 psi

12h 450°C H 2 20 psi

2h 450°C He 20 psi

5min -196°C He 20 psi

4h 450°C He 20 psi

5min -196°C He 20 psi

4 h 450 °C H 2 20 psi

12 h 450 °C H 2 20 psi

>100

>100

>100

>100

33.7 40.4 5.5

44.6 --- 6.5

>100 --- 5.0

>100 --- 4.8

4.5 200 psi 25 (1.15) 1

6.0 200 psi 25 (1.15) 2

4.5 200 psi 27 (3.9) 3

6.3 200 psi 27 (3.9) 4

250 psi 27 (3.9) 5

250 psi 27 (3.9) 6

200 psi 29 (8.7) 7

200 psi 29 (8.7) 8

12 h 335 °C H 2 20 psi

12h 335°C He 20 psi

5min -196°C He 20 psi 30.0 35.1 4.3 250 psi 29 (8.7) 9

Table 15. Activity of 8% Ru/SiO 2 with Pt Co-catalyst

Activation Conditions

Time Temla Gas Pressure 15'

Test Conditions

ff Pressure CB-II-# Trial

5 h. 450 °C H 2 20 psi 40.8 ---

12h. 450°C H 2 20 psi 37.5 ---

5 h. 450 °C H 2 20 psi 42.0 ---

12h. 450°C H 2 20 psi 42.0 ---

4.0 200 psi CB-II-44 1

3.6 200 psi CB-II-44 2

3.6 200 psi CB-II-45 3

3.7 200 psi CB-II-45 4



Table 16. Activity of Catalysts Prepared by Alternative Methods

74

Activation Conditions Test Conditions

Time Teml! Gas Pressure _ _ {3' Pressure CB-II-# Trial

4 h. 335 °C H 2 20 psi >100 --- 4.0 200 psi CB-II-37

4 h. 450 °C H 2 20 psi 74 --- 3.2 200 psi CB-II-37

12 h. 450 °C H 2 20 psi 58 --- 3.3 200 psi CB-II-37

8h. 450°C H 2 20 psi

12h. 450°C He 20 psi

5 min. -196°C He 20 psi 15.8 19.9 6.3 200 psi CB-II-37

1

2

3

4

4 h. 450 °C H 2 20 psi 74 --- 3.2 200 psi CB-II-48W

8h. 450°C H 2 20 psi

12h. 450°C He 20 psi

5 min. -196°C He 20 psi 34.7 --- 5.3 200 psi CB-II-48W

5

6

Table 17. Activity of Ru Ammine Catalysts; Ru(NO)(NO3) a Precursor

Catalyst Ru Weight % B' [H,-He]

CB-II-106 2.03 20.3 14.3

CB-II-105 3.91 9.0 6.8

CB-II-88 6.61 5.9 4.3

CB-II-92 8.47 6.9 4.0

CB-II- 117 10.15 8.5 5.0
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Table 18. Activity of Chloride Containing Ruthenium Precursor-Activity of Alternative

Catalyst Preparations

Catalyst Precursor Ru Weight % _ B* [H,-HeI

CB-II-89 RuC13 7.33 > 125 41.7

CB-II-93 Ru(NO)C13 7.02 83.3 60.6

CB-II-89W RuC13 7.33 > 125 45.3

CB-II-125 Ru(NO)(NO3)3 7.20 8.5 5.6

CB-II-130 RuC13 5.55 9.6 4.5

Table 19. Results of (_4--cyclohexa-l,3-diene)(rlt-benzene) Ruthenium Precursor Catalysts

Metal Loading Activating Gas lY Temp (if) _*

3.5 H 2 2.28 - 145°C 67.67

4.0 H 2 2.36 - 149°C 84.34

He 2.43 - 149°C 57.07

4.7 H2 2.31 - 160°C 25.62
He 3.21 - 172°C 20.4

6.0 H2 2.24 - 156°C 18.11
He 2.62 - 160°C 21.93

14.0 H 2 3.09 - 170°C 11.55
He 2.21 - 166°C 10.94

17.2 H 2 1.85 - 173°C 10.54
He 2.16 - 176°C 8.88

23.7 H 2 1.81 - 168°C 11.31
He 2.03 - 172°C 7.35



Table 20. Dispersion of Ruthenium Ammine Precursor Catalysts Prepared with

Ru(NO)(NO3)3

76

Catalyst Metal Content Dispersion Ru Atoms/Gram (xl019)

CB-II-106 2.03 % 39.4 % 4.69

CB-II-105 3.91% 24.5 % 5.84

CB-II-88 6.61% 32.7 % 12.96

CB-II-92 8.47 % 19.38 % 9.78

CB-II-117 10.15 % 9.0 % 5.43

CB-II-125 7.20 % 34.22 % 14.32

Table 21. Dispersion of Ammine Precursor Catalyst Prepared by Alternative Procedures

Catalyst Precursor Metal Content Dispersion Ru Atoms/Gram (xl019)

CB-II-89 RuC13 7.33 % 3.40 % 1.49

CB-II-93 Ru(NO)C13 7.02 % 13.32 % 5.57

CB-II-89W RuC1 a 7.33 % 3.38 % 1.48

CB-II-130 RuC13 5.55 % 37.75 % 12.37

Table 22. Dispersions of Selected Traditional Ruthenium Catalysts

Catalyst Precursor

CB-II-19 RuC13

CB-II-23 Ru(NO)C13

CB-II-27 Ru(NO)(NO3) 3

Metal Content Dispersion Ru Atoms/Gram (xl0 _9)

4.37 % 11.9 % 3.10

5.86 % 6.23 % 2.18

3.94 % 1.8 % 0.461
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Ortho-H2

(S = 1)

_Para-_[ 2

c_c_

_[3+

(s = o) aO- _c_

Figure 1. Schematic of the Degeneracy of the Two Forms of Hydrogen
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2.20

i 2.06

1.92

1.78

_ 1.64

1.50
200 240 280 320 360 400

Temperature (K)

Figure 3. Thermal Conductivities of H2vs. Temperature (,, ortho- • para-

Reference H2;

75 % Ortho 25 % Para

TCD

Catalyzed H 2

(75% - C) Ortho; (25% + C) Para

Maximum: 50%-Ortho 50%-Para

Figure 4. Simplified Schematic for Detection of ortho- and para-H2Compositions.
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r-

H 2 Out

<

H 2 In

J
"-1

]
Catalyst Bed

Figure 6. Reactor Tube Assembly 1; Without Thermocouple
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6

1) VCR Plug

2) VCR Nut

3) VCR Gland

4) 1/4" SwtgelokTee

5) 1/4" to 1/8" Swagelok Union

6) 1/4" to 1/8" Swagelok Reducer

7) Stainless Thermoeouple Manifold

8) Thermoeouple Assembly

9) 3/8" to 1/8" Swagelok Union

Catalyst Bed

< 8

Figure 7. Reactor Tube Assembly 2; Bent Thermocouple
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H2 Out

Figure 8. Reactor Tube Assembly 3; Straight Thermocouple
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